
1 Document Identifier: DSP2058

2 Date: 2022-01-04

3 Version: 1.1.0

4 Security Protocol and Data Model (SPDM)
Architecture White Paper

5

6

7

8

Supersedes: 1.0.0

Document Class: Informational

Document Status: Published

Document Language: en-US

Published

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

12 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2020-2022 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

2 Published Version 1.1.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

13 CONTENTS

1 Abstract . 6

2 Foreword . 7

2.1 Acknowledgments . 7

3 References. 9

4 Terms and definitions . 10

5 Introduction . 11

5.1 Typographical conventions . 11

5.2 Authentication . 11

5.3 Authenticated Encryption with Associated Data (AEAD). 11

5.4 Security Platform and Data Model (SPDM) architecture . 12

5.5 SPDM standards overview . 12

5.6 Threat model . 13

6 SPDM concepts . 16

6.1 PMCI stack . 16

6.2 Other bindings . 17

7 SPDM trusted computing base . 18

8 Certificates . 19

8.1 Background on certificates . 19

8.2 Certificate overview . 19

8.2.1 Certificate chain validation . 20

8.3 SPDM certificate slots . 21

8.3.1 Stored certificate chain format . 22

8.4 Certificate chain algorithms . 22

8.4.1 Certificate chain verifier compatibility . 23

8.5 Certificate requirements . 23

8.5.1 Certificate retrieval . 23

8.5.2 Certificate fields. 23

8.6 Interpreting certificate contents . 24

8.7 Example leaf certificate . 25

8.8 Certificate provisioning . 26

8.9 Device key pair . 27

8.9.1 Key provisioning . 27

8.9.1.1 Internal key generation . 27

8.9.1.2 External key provisioning . 27

8.9.2 Key protection . 28

8.10 Alternatives to certificate chains . 29

8.10.1 Pre-Shared Key. 29

8.10.2 Provisioned public key . 29

9 SPDM messages . 30

9.1 Compatibility between versions . 30

9.2 Message details. 31

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 3

9.2.1 GET_VERSION and VERSION exchange . 31

9.2.2 GET_CAPABILITIES and CAPABILITIES exchange . 31

9.2.2.1 CAPABILITIES flags . 32

9.2.2.2 CACHE_CAP flag . 33

9.2.2.2.1 Multiple caching Requesters . 33

9.2.2.2.2 Negotiated State validity. 33

9.2.3 NEGOTIATE_ALGORITHMS and ALGORITHMS exchange . 34

9.2.4 GET_DIGESTS and DIGESTS exchange. 34

9.2.5 GET_CERTIFICATE and CERTIFICATE exchange . 34

9.2.6 CHALLENGE and CHALLENGE_AUTH exchange . 34

9.2.6.1 Unique MeasurementSummaryHash . 35

9.2.7 GET_MEASUREMENTS and MEASUREMENTS exchange . 35

9.2.7.1 Summary measurements . 36

9.2.7.2 Firmware debug indication . 36

9.2.7.3 MEASUREMENTS only components . 36

9.2.8 Encapsulated request flows . 36

9.2.9 Secure session messages . 37

9.2.10 VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE exchange 37

9.2.11 RESPOND_IF_READY sequence. 37

9.3 Message exchanges . 38

9.3.1 Multiple Requesters . 38

9.3.2 Message timeouts and retries . 39

9.3.2.1 Secured Messages retries . 39

10 Attestation and security policies. 40

10.1 Certificate authorization policy. 40

10.2 Measurement. 41

10.3 Secured Messages policy . 42

11 Secured Messages. 43

11.1 Secured Message layering . 43

11.1.1 Secured Message send. 43

11.1.2 Secured Message receive . 44

11.2 Secured Message error handling. 45

11.3 Random data . 45

12 Protection of internal secrets . 47

13 Root of Trust . 48

13.1 Root of Trust for detection . 48

13.2 Root of Trust for measurement . 48

13.3 Root of Trust for reporting . 48

14 Partner implementations . 49

14.1 Partner binding specifications . 49

14.2 Enabling partner implementations . 49

14.2.1 OpaqueData . 49

14.2.2 Registry or standards body ID. 49

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

4 Published Version 1.1.0

14.2.3 Vendor-defined commands . 49

14.2.4 Certificates with partner information . 50

15 ANNEX A (informative) change log . 52

15.1 Version 1.0.0 (2020-05-13) . 52

15.2 Version 1.1.0 (2022-01-04) . 52

16 Bibliography . 53

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 5

14 1 Abstract

15 This white paper presents an overview of the SPDM architecture, its goals, and a high-level summary of its use

within a larger solution. The intended target audience for this white paper includes readers interested in

understanding the use of the SPDM to facilitate security of the communications among components of platform

management subsystems.

16 Note: This white paper refers to this architecture as the Security Protocol and Data Model (SPDM) architecture

or SPDM.

17 The PMCI architecture focuses on intercommunication among different platform-management subsystem

components in a standards-based manner across any management component implementation, independent of the

operating system state. The SPDM architecture focuses on security relative to these communications.

18 This white paper is not a replacement for the individual SPDM specifications but provides an overview of how the

specifications operate within a larger solution.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

6 Published Version 1.1.0

19 2 Foreword

20 The Platform Management Communications Infrastructure (PMCI) Working Group of the DMTF prepared the

Security Protocol and Data Model (SPDM) Architecture White Paper (DSP2058).

21 DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and

interoperability. For information about the DMTF, see DMTF.

22 The PMCI Working Group defines standards to address inside the box communication interfaces among the

components of the platform-management subsystem.

23 This version supersedes version 1.0 and its errata versions. For a list of the changes, see ANNEX A (informative)

change log.

24 2.1 Acknowledgments

25 The authors want to acknowledge the following people:

26 Editors:

• Brett Henning — Broadcom Inc.

• Raghupathy Krishnamurthy — NVIDIA Corporation

• Masoud Manoo — Lenovo

• Viswanath Ponnuru — Dell Technologies

27 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Jeff Andersen — Google

• Lee Ballard — Dell Technologies

• Steven Bellock — NVIDIA Corporation

• Heng Cai — Alibaba Group

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Andrew Draper — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Jeff Hilland — Hewlett Packard Enterprise

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 7

https://www.dmtf.org/

• Yi Hou — Microchip

• Guerney Hunt — IBM

• Yuval Itkin — NVIDIA Corporation

• Theo Koulouris — Hewlett Packard Enterprise

• Benjamin Lei — Lenovo

• Luis Luciani — Hewlett Packard Enterprise

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Chandra Nelogal — Dell Technologies

• Edward Newman — Hewlett Packard Enterprise

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Vidya Satyamsetti — Google

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

• Peng Xiao — Alibaba Group

• Qing Yang — Alibaba Group

• Jiewen Yao — Intel Corporation

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

8 Published Version 1.1.0

28 3 References

29 The following referenced documents are indispensable for the application of this white paper. For dated or versioned

references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without

a date or version, the latest published edition of the referenced document, including any corrigenda or DMTF update

versions, applies.

• DMTF DSP0236, MCTP Base Specification 1.3.0

• DMTF DSP0239, Management Component Transport Protocol (MCTP) IDs and Codes

• DMTF DSP0274, Security Protocol and Data Model (SPDM) Specification 1.1.1

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification 1.0.0

• DMTF DSP0276, Secured Messages using SPDM over MCTP Binding Specification 1.0.0

• DMTF DSP0277, Secured Messages using SPDM Specification 1.0.0

• DMTF DSP2015, Platform Management Components Intercommunication (PMCI) Architecture White Paper

2.0.0

• IETF TLS DTLS13-43, The Datagram Transport Layer Security (DTLS) Protocol Version 1.3 draft-ietf-tls-

dtls13-43, 30 April 2021

• RFC5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

• NIST SP 800-57, NIST SP 800-57 Part 1 Rev. 4, Recommendation for Key Management, Part 1: General

• NIST SP 800-90, NIST SP 800-90A Rev. 1, Recommendation for Random Number Generation Using

Deterministic Random Bit Generators

• NIST SP 800-193, NIST SP 800-193, Platform Firmware Resiliency Guidelines

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 9

https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.8.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0275_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0276_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0277_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP2015_2.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP2015_2.0.0.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13
https://tools.ietf.org/html/rfc5280
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019

30 4 Terms and definitions

31 This white paper uses terms that the following specifications define:

• Security Protocol and Data Model (SPDM) Specification 1.1.1

• Security Protocol and Data Model (SPDM) over MCTP Binding Specification 1.0.0

• Secured Messages using SPDM over MCTP Binding Specification 1.0.0

• Secured Messages using SPDM Specification 1.0.0

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

10 Published Version 1.1.0

32 5 Introduction

33 5.1 Typographical conventions

• Document titles are marked in italics.

• Important terms that are used for the first time are marked in italics.

• ABNF rules are in a mono-spaced font.

34 5.2 Authentication

35 Enterprise computer platforms include many components that contain mutable elements. Each mutable component

presents a potential vector for attack against the component itself, or even the use of a component to attack another

component in the computer. To defend against these attacks, the Security Protocol and Data Model (SPDM)

Specification enables conformant implementations to challenge a component to prove its identity and the correctness

of its mutable component configuration.

36 An SPDM-conformant component generates, or is provisioned with, an asymmetric device public/private key pair.

The component uses the device private key to sign requests, which proves knowledge of the private key. The

Requester uses the device public key to authenticate the component-generated signature. For more details about the

message exchanges, see Message details.

37 An SPDM-conformant component that is acting as a Responder can also perform authentication of the Requester,

which is mutual authentication. By performing mutual authentication, the Responder can establish two-way trust with

the Requester so that the two parties can establish a session.

38 5.3 Authenticated Encryption with Associated Data (AEAD)

39 SPDM-conformant components can establish an Authenticated Encryption with Associated Data (AEAD) session.

When a Requester and Responder have established an AEAD session, the Requester and Responder establish

shared keys that are used to protect communication between the two endpoints. The keys can be used for

authenticated communication, or for authenticated and encrypted communication.

40 Components can establish a session to protect messages from unauthorized alteration (authenticated

communication) or to protect messages from unauthorized observation and alteration (authenticated and encrypted

communication). This protection of messages might be used for SPDM defined messages or messages defined by

another specification, such as PLDM.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 11

41 5.4 Security Platform and Data Model (SPDM) architecture

42 A platform management subsystem in a modern enterprise computer platform comprises a set of components, which

communicate to perform management functions within the platform. In many cases, these communications occur

between components that comprise one or more mutable elements, such as firmware or software, re-programmable

logic (FPGA), and re-programmable microcode. Further, a computer platform might contain immutable components,

which comprise fixed logic or fixed firmware or software.

43 In such a platform management subsystem, stakeholders have a desire to establish trust, and to reestablish trust

over time, with a component before securely communicating with that component.

44 The DMTF SPDM provides an authentication mechanism to establish trust, which uses proven cryptographic

methods that protect the authentication process. As part of establishing trust between two endpoints, the SPDM

specification enables the creation of a session to exchange secured messages between the endpoints.

45 For the purposes of this white paper, a component can encompass a number of component types, including PCIe

adapters, Baseboard Management Controllers, purpose-built authentication components, Central Processing Units,

platform components that are attached over I2C, and more. Each of these components represents a potential attack

vector, through the insertion of counterfeit components, the compromise of firmware, or other attacks.

46 The SPDM enables these mechanisms to authenticate and secure communication with a component:

1. The retrieval of a public key certificate from a component, and a protocol to challenge the component

to prove that it is the component whose identity is uniquely described by that certificate.

2. The retrieval of a signed measurement payload of mutable components from a component. These

measurements can represent a firmware revision, component configuration, the Root of Trust for

Measurements, hardware integrity, and more.

3. The negotiation of session keys with a component, enabling Secured Message exchanges with that

component.

47 Finally, SPDM includes provisions for future expansion, by adding operations and capabilities while maintaining

compatibility with existing deployments.

48 5.5 SPDM standards overview

49 SPDM specifies a method for managed device authentication, firmware measurement, and certificate management.

SPDM defines the formats for both request and response messages that enable the end-to-end security features

among the platform-management components.

50 The SPDM specifications include:

• Security Protocol and Data Model (SPDM) Specification 1.1.1 (DSP0274)

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

12 Published Version 1.1.0

• Security Protocol and Data Model (SPDM) over MCTP Binding Specification 1.0.0 (DSP0275)

• Secured Messages using SPDM over MCTP Binding Specification 1.0.0 (DSP0276)

• Secured Messages using SPDM Specification 1.0.0 (DSP0277)

51 5.6 Threat model

52 The risk assessment identifies threats and vulnerabilities related to the SPDM interactions between components.

Figure 1 — SPDM threat model shows the SPDM interaction between components. The following threat model

follows the STRIDE model. See STRIDE (security) for more details.

53 Figure 1 — SPDM threat model

54

55 Scope of this risk assessment:

56 The scope of this assessment includes the security controls of the component as it comprises data model

security and authentication. Any limitations of the physical I2C, I3C, PCIe, GenZ, CXL, or any other network

channel shall not apply to this threat assessment.

57 Table 1 — Threat modeling assessment and mitigations describes the threat modeling assessment and mitigations:

58 Table 1 — Threat modeling assessment and mitigations

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 13

https://en.wikipedia.org/wiki/STRIDE_(security)

STRIDE category Description Justification mitigation

Spoofing

Packets or messages without sequence numbers or timestamps can be captured

and replayed in a wide variety of ways. Implement or use a communication

protocol that supports anti-replay techniques, which investigate sequence

numbers before timers, and strong integrity.

To prevent replay attacks, the

Requester and Responder shall use

a random nonce.

Tampering

Attackers who can send a series of packets or messages might overlap data. For

example, packet 1 might be 100 bytes starting at offset 0.

Packet 2 might be 100 bytes starting at offset 25. Packet 2 overwrites 75 bytes of

packet 1.

Ensure that you both reassemble data before filtering it and explicitly handle these

sorts of cases.

To prevent intruders from tampering

with exchanged data, use one or

more of these strategies:

• Strong authorization schemes

• Hashes

• Message authentication codes

• Digital signatures

Information

Disclosure

Custom authentication schemes are susceptible to common weaknesses, such as

weak credential change management, credential equivalence, easily guessable

credentials, absent credentials, downgrade authentication, or a weak credential

change management system. Consider the impact and potential mitigations for

your custom authentication scheme.

To prevent attacks, use one or more

of these strategies as supported by

the endpoint components:

• Stronger authentication

schemes

• Versions

• Cryptographic algorithms

Elevation of

Privilege

Requester or Responder might be able to impersonate the context of the

Requester or Responder to gain additional privilege.

Out of scope. The endpoint that

receives the request or response

must mitigate this activity. The

contents of the message are not

interpreted at the MCTP layer.

Repudiation

Requester or Responder claims that it did not receive data from a source outside

the trust boundary. Consider using logging or auditing to record the source, time,

and summary of the received data.

To mitigate attacks, use one or

more of these strategies:

• Digital signatures

• Timestamps

• Audit trails

Information

Disclosure

Credentials on the wire are often subject to sniffing by an attacker. Are the

credentials re-usable or re-playable? Are the credentials included in a message?

For example, sending a ZIP file with the password in the email.

Use strong cryptography for the transmission of credentials. Use the OS libraries,

if possible, and consider cryptographic algorithm agility rather than hard-coding a

choice.

To mitigate this attack, use stronger

authentication schemes and

cryptographic algorithms.

Denial of Service
Requester or Responder crashes, halts, stops, or runs slowly. In all cases, an

availability metric is violated.

Out of Scope. To address

uncorrectable errors or any type of

crash, the Requester or Responder

shall implement recovery

mechanisms.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

14 Published Version 1.1.0

STRIDE category Description Justification mitigation

Denial of Service External agent interrupts data flowing across a trust boundary in either direction.

If physical access is possible and

the Start of Message and End of

Message bits are not protected, a

message can be dropped for one of

the following reasons:

1. Receipt of the end

packet for a

message.

2. Receipt of a new

start packet.

3. Timeout waiting for

a packet.

4. Out-of-sequence

packet sequence

number.

5. Incorrect

transmission unit.

6. Bad message

integrity check.

Only the whole MCTP message is

secure. The individual MCTP

packets are not secure.

Elevation of

Privilege

Requester or Responder might be able to remotely execute code for the

Responder.

Out of scope. The endpoint that

receives the request or response

must mitigate this activity. The

contents of the message are not

interpreted at the MCTP layer.

Elevation of

Privilege

Attacker might pass data into The Requester or Responder to change the flow of

program execution within Requester or Responder to the attacker's choosing.

Out of scope. The endpoint that

receives the request or response

must mitigate this activity. The

contents of the message are not

interpreted at the MCTP layer.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 15

59 6 SPDM concepts

60 6.1 PMCI stack

61 Figure 2 — SPDM over MCTP shows the relationship among SPDM messages and other messages that use MCTP.

Messages that the SPDM specification defines use MCTP message type 5, and might be used in conjunction with

other MCTP message types. Messages that provide authentication support use MCTP message type 5. MCTP

message type 6 is used in conjunction with other MCTP message types to enable Secured Messages.

62 Figure 2 — SPDM over MCTP

63

64 For details on the relationships among PMCI specifications, see the Platform Management Components

Intercommunication (PMCI) Architecture White Paper (DSP2015).

65 Figure 3 — SPDM security stack shows the relationship among the security related specifications produced by the

PMCI Working Group, and the relationships to other specifications produced by the PMCI Working Group.

66 Figure 3 — SPDM security stack

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

16 Published Version 1.1.0

67

68 The Security Protocol and Data Model Specification (DSP0274) defines the contents of the messages, supported

exchanges, and requirements.

69 The Security Protocol and Data Model (SPDM) over MCTP Binding Specification (DSP0275) defines the method for

transporting SPDM messages over an MCTP transport.

70 The Secured Messages using SPDM over MCTP Binding Specification (DSP0276) binds Secured Messages using

SPDM specification (DSP0277) to the MCTP transport.

71 The Secured Messages using SPDM Specification (DSP0277) defines the methodology that various PMCI transports

can use to communicate various application data securely by utilizing SPDM.

72 6.2 Other bindings

73 Other standards bodies can create binding specifications that enable SPDM on transports other than those defined

by DMTF. While many of the concepts in this white paper might apply to those implementations, the details of non-

DMTF SPDM bindings are beyond the scope of this white paper.

74 For more information related to other binding specifications, see Partner implementations.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 17

75 7 SPDM trusted computing base

76 The SPDM protocol provides authentication of devices and attestation of firmware running on a device. This means

that the SPDM software stack becomes a part of the trusted computing base (TCB) for a device and a verifier, and

the code must be implicitly trusted. As is typical of any TCB, a compromise in the TCB is undetectable and the

trustworthiness of attestation reports are only as trustworthy as the TCB. There is no mechanism prescribed by the

SPDM specification for protection, detection and recovery of the TCB. To provide higher security assurances around

the TCB, device manufacturers and implementers can use methods outside the specification to protect, detect, and

recover the TCB.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

18 Published Version 1.1.0

77 8 Certificates

78 If a Responder supports the certificate-related SPDM GET_DIGESTS , GET_CERTIFICATE , and CHALLENGE requests,

the Responder must be provisioned with at least one certificate chain. If a Responder only supports the

GET_MEASUREMENTS request, but cannot perform signature generation, it does not require a certificate chain or need

to follow the guidance in the rest of this clause. A less capable component might be implemented in such a manner

so that it does not require as much processing power or because such an implementation is conformant to the

component's requirements. Whether a Requester accepts such a component is dependent on the Requester's

security policy.

79 8.1 Background on certificates

80 The SPDM specification uses X.509 v3 certificates, as defined in RFC5280, to communicate identity information

between two components. The use of X.509 v3 certificates has the following advantages:

• When properly validated, X.509 v3 certificates are resistant to tampering.

• X.509 v3 certificates are standards based and widely supported.

• X.509 v3 certificates can use extensions to capture and convey other information, including information

structures that DMTF defines.

81 8.2 Certificate overview

82 During the certificate-related SPDM request sequence, the Requester attempts to determine the identity of the

Responder based on the certificate chain that the Responder returns. To report its identity, the Responder returns a

chain of linked certificates that include at least a device certificate and a certificate issued by a CA that the Requester

trusts. The certificate that the Requester trusts could be a root certificate or an intermediate certificate.

83 Figure 4 — Example certificate chain shows an example certificate chain:

84 Figure 4 — Example certificate chain

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 19

85

Root Certificate

Intermediate
Certificate(s)

Device Certificate

86 Table 2 — Certificate chain elements summarizes the roles of the elements that Figure 4 — Example certificate

chain shows.

87 Table 2 — Certificate chain elements

Certificate chain element Description

Root certificate Conceptually the highest certificate in the chain. Contains a record of the issuing authority and is self-signed.

Intermediate certificate

A certificate chain typically contains one or more of these certificates, which enable the allocation of separate

intermediate certificates to different device families or product divisions within a company. This enables

flexibility in establishing complex hierarchies of certificates for easier revocation and to protect the root

certificate private key which might be kept offline.

Device certificate

Uniquely identifies the component. Should not change over the life of a component, unless the component is

re-provisioned. If an operation changes the Device key pair, then the Device certificate must be replaced. The

lowest level certificate in a certificate chain is called the leaf certificate.

88 8.2.1 Certificate chain validation

89 Before a Requester uses the contents of a certificate chain, it must validate the certificate chain to ensure that it is

properly formed. RFC5280 specifies the detailed process for validating a certificate chain. To assist the reader, the

process is summarized here (note, the discussion in this section is based on the diagram in Figure 4 — Example

certificate chain):

• Check each certificate to ensure that it references the certificate above it in the chain.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

20 Published Version 1.1.0

• Validate the signature in each certificate using the public key from the certificate above it in the chain.

• Read the validity dates, key usage policies, and other constraining information from the certificates to verify that

the certificate and its associated key pair are being used correctly.

• Ensure that the root certificate is a known and trusted certificate.

90 After the RFC5280 based certificate chain validation is complete, the Requester knows that the certificate chain is

correctly formed but this information is insufficient. The Requester still must ensure that the Responder is the

component that should be returning this certificate chain. This check is performed by verifying that the Responder

has knowledge of the private key associated with the public key in the leaf certificate by using the CHALLENGE

message exchange.

91 8.3 SPDM certificate slots

92 The SPDM specification defines a total of eight slots for storing certificate chains, with each slot storing a complete

and independent certificate chain. Further, the SPDM specification states that the component uses the same

asymmetric key pair for the leaf certificate located in each slot. The certificate chain for each slot can contain different

root certificates. While SPDM supports up to eight certificate slots, only slot 0 is required to be present for

components that use certificates. Further, a component can implement fewer than eight certificate slots, such as

three slots.

93 The certificate chain in slot 0 has a special role in the system because the component manufacturer provisions the

contents of slot 0 during manufacturing. The certificate chain in slot 0 represents the manufacturer, and this

certificate chain is often immutable, though immutability is not required by the SPDM specification. This certificate

chain is also known as the manufacturer certificate chain.

94 Some deployment use cases might make use of certificate slots 1 to 7. For instance, an administrator can claim

ownership of a component by installing a certificate chain belonging to the administrator in one or more of the

additional slots (certificate slots 1 to 7). The use of these additional slots enables the administrator to authenticate

the component using a certificate chain that is owned and managed by the administrator. Another use of additional

certificate slots is to set certificate validity ranges that expire in a shorter time-frame than the certificate chain

installed by the component vendor.

95 Figure 5 — Example certificate slots shows an example of the use of certificate slots:

96 Figure 5 — Example certificate slots

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 21

97

...

Slot 1

Root CA 1

Intermediate
CA 1.1

Device Cert 1
Dev Key Pair

Intermediate
CA 1.2

Slot 0

Root CA 0

Intermediate
CA 0

Device Cert 0
Dev Key Pair

Slot 7

Root CA 7

Device Cert 7
Dev Key Pair

98 8.3.1 Stored certificate chain format

99 The SPDM specification indicates that the certificate chain returned to the Requester are formatted where the first

certificate is signed by the root certificate, or is the root certificate itself, and each subsequent certificate is signed by

the preceding certificate until the leaf certificate. The returned certificate chain is also to include a hash of the root

certificate. Implementers are recommended to store the entire certificate chain in a slot, including the root certificate,

so that the hash can be generated with the currently negotiated algorithm.

100 A Responder can choose to send one of the two certificate chain formats (with or without the root certificate)

depending on the situation. For instance, a Responder could send the certificate chain formatted without the root

certificate when using a slower transport.

101 8.4 Certificate chain algorithms

102 A certificate chain is implicitly tied to a pairing of BaseAsymAlgo and BaseHashAlgo , as the ALGORITHMS message

exchange defines. The negotiated BaseAsymAlgo and BaseHashAlgo fields must match the algorithms used to

create the certificate chain on the Responder. For compatibility purposes, a component vendor can provision a

component with certificate chains that correspond to multiple BaseAsymAlgo and BaseHashAlgo pairings. For

instance, a component can have one set of certificate chain slots that it uses to pair TPM_ALG_ECDSA_ECC_NIST_P384

and TPM_ALG_SHA3_384 , and another set of certificate chain slots that it uses to pair TPM_ALG_RSASSA_3072 and

TPM_ALG_SHA_256 . In this case, the Responder uses the negotiated algorithm set to select among its different sets of

certificate chain slots. In such an implementation, it's feasible that the populated certificate slots could differ between

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

22 Published Version 1.1.0

the different sets of certificate chain slots. The definition and reporting of a slot management mechanism such as this

is outside of scope for the SPDM specification.

103 8.4.1 Certificate chain verifier compatibility

104 The set of cryptographic algorithms that the Requester and Responder negotiate during the ALGORITHMS exchange

match the cryptographic algorithms use the in the leaf certificate. However, a Responder typically returns a certificate

chain with multiple certificates in the CERTIFICATE response. When validating the returned certificate chain, the

Requester should not assume that all certificates in the certificate chain use the same cryptographic algorithms as

the leaf certificate. For the sake of compatibility, a Responder should constrain itself to use cryptographic algorithms

specified in the SPDM NEGOTIATE_ALGORITHMS exchange, and Requesters should support the use of all

cryptographic algorithms specified in the SPDM NEGOTIATE_ALGORITHMS exchange.

105 8.5 Certificate requirements

106 Certificate chains follow the X.509 v3 format, and are DER-encoded. Certificate chains can be long compared to

other SPDM messages, so Requesters should ensure that buffers are large enough to receive them. The maximum

length of a certificate chain that can be conveyed by SPDM is 64 KiB. The support to verify signatures of different

cryptographic algorithms on the certificate chains remain the responsibility of Requester and Responder software

stacks. It is expected that they support verification of commonly accepted algorithms to promote interoperability.

107 The leaf certificate in the certificate chains must conform to the SPDM specification, Leaf certificate clause defined

format. The certificate format guidance in SPDM is based on RFC5280. Table 2 — Optional leaf certificate attributes

describes the leaf certificate attributes that the SPDM specification specifies as optional.

108 8.5.1 Certificate retrieval

109 If a Requester cannot allocate a buffer for the maximum certificate chain size of 64 KiB, the Requester can issue a

GET_CERTIFICATE request with the Length field set to a small number, such as four bytes. In this case, the

Responder returns the requested portion of the certificate chain and the remaining length in the RemainderLength

field. SPDM provides a mechanism to segment a certificate chain using the Offset and Length fields in the

GET_CERTIFICATE request to retrieve the certificate chain in smaller increments. This mechanism can compensate

for Requesters, Responders, or transports that cannot transfer an entire certificate chain in one response message.

110 A Requester should anticipate that a Responder might not be capable of sending the entire certificate chain in one

transaction, even if the Requester is capable of allocating a sufficiently large buffer.

111 8.5.2 Certificate fields

112 X.509 v3 certificates contain multiple fields, as defined by RFC5280. In addition, the SPDM specification specifies

usage of some X.509 v3 defined fields.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 23

113 Table 2 — Optional leaf certificate attributes

Attribute Description

Validity (notBefore)

If present, it is recommended that the notBefore field of the Validity attribute should be set to

19700101000000Z , which is the minimum Validity date. Because most Requester and Responder pairs do

not contain a real-time clock, the use of the minimum Validity date ensures that the Requester ignores the

notBefore field.

Validity (notAfter)

If present, it is recommended that the notAfter field of the Validity attribute should be set to

99991231235959Z , which is the maximum Validity date. Because most Requester and Responder pairs do

not contain a real-time clock, the use of the maximum Validity date ensures that the Requester ignores the

notAfter field.

Subject Alternative

Name
Recommended. It enables reporting of more detailed and standardized component identification.

114 Though not required, the SPDM specification details the Subject Alternative Name for components that are

SPDM conformant. Standards bodies that create additional binding specifications for SPDM should specify

appropriate guidelines for the Subject Alternative Name and Common Name fields (see Partner

implementations). All standards bodies that use the SPDM specification should retain the Serial Number field in the

certificate definition.

115 A certificate should use the otherName field in the Subject Alternative Name to provide detailed information

about the manufacturer, product, and serial number.

116 The OID in the othername field is 1.3.6.1.4.1.412.274.1 . This value represents a UTF8String in the

<manufacturer>:<product>:<serialNumber> format.

117 The following example string shows the format of the SPDM defined Subject Alternative Name otherName field:

othername:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

118 The X.509v3 certificates can include the Authority Key Identifier , which assists authentication of the certificate

chain. This assistance is especially important for the certificate that is immediately below the root certificate because

the Authority Key Identifier can help the Requester locate the root certificate in its trust store. The presence of

the Authority Key Identifier can also help with debug of certificate chain problems, by illustrating how

certificates are intended to connect.

119 8.6 Interpreting certificate contents

120 A certificate chain contains information that a Requester can interpret to make policy decisions about a given

Responder. Once a certificate chain has been validated, as described in Certificate chain validation, a Requester can

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

24 Published Version 1.1.0

use the Certificate fields to interpret the information contained in the certificate chain. While many of the fields are

interpreted as defined in RFC5280, some fields are defined by the SPDM specification.

121 Table 3 — Interpretation of select certificate fields summarizes potential use cases for select SPDM specification

defined Certificate fields.

122 Table 3 — Interpretation of select certificate fields

Field

Required

or

optional

Interpretation

Subject

Alternative

Name

otherName

Optional

The otherName field provides identifying details for the component in a machine parsable manner. A Requester

could use this field to match the identity of the component with the same information obtained through other

channels, to create an entry for the component in a database, or to display information about the component to a

user.

123 8.7 Example leaf certificate

124 The following example shows a leaf certificate:

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 4097 (0x1001)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C = US, ST = NC, L = City, O = ACME, OU = ACME Devices, CN = CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 11:59:59 9999 GMT

Subject: C = US, ST = NC, L = City, O = ACME Widget Manufacturing, OU = ACME Widget Manufacturing Unit, CN = w0123456789
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

00:cc:41:73:a3:f1:ff:78:ff:78:f5:e1:a7:3c:2e:
ae:40:82:db:04:eb:ad:e8:54:e7:8f:4a:76:3c:a2:
21:77:72:e7:70:a6:0a:b3:7a:a3:e8:af:49:5c:ec:
57:00:6b:6e:0b:09:b7:f0:be:35:c4:ec:e8:f8:28:
0c:0a:b8:59:48:a7:14:47:88:05:c5:8c:1e:e5:79:
5a:2b:31:fe:14:27:12:eb:ba:53:40:74:43:5b:e0:
f4:be:45:93:f8:87:b6:a3:13:f1:7c:72:5f:c1:aa:
a6:be:fd:e8:c4:3a:ae:24:0e:81:25:c6:f2:6c:fd:
53:27:89:4c:f6:37:22:cf:25:5d:51:b9:30:54:61:
fe:0b:23:2f:dd:e3:1b:87:30:a4:b3:16:41:48:51:
1e:17:29:3a:2b:57:1c:41:67:27:62:15:08:6e:c1:
59:8d:d7:c3:0f:33:05:26:a0:1b:b9:f5:b4:36:0d:

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 25

bb:ec:24:5d:bb:c9:0b:b2:57:1b:7b:18:21:d4:c0:
ec:fd:0a:03:33:4e:b0:55:e7:3f:26:b1:96:1f:b3:
2a:18:2d:88:4d:cd:9c:26:08:2c:d7:fc:5f:87:b4:
e8:06:ad:6d:ce:65:0f:88:26:85:7d:aa:54:6d:57:
34:34:ae:40:83:15:ee:cf:2c:06:ee:69:52:92:9b:
b0:77

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Authority Key Identifier:
CB:0C:55:D9:4F:18:EE:B9:54:25:3D:08:1A:4C:02:24:80:BF:CF:FE

X509v3 Key Usage: critical
Digital Signature

X509v3 Subject Alternative Name:
othername: 1.3.6.1.4.1.412.274.1::ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

30:44:02:20:3d:c9:e5:59:43:a5:f1:56:3e:8f:cb:ef:96:e1:
bc:4d:bd:ca:d1:a7:69:7e:10:0e:58:74:5b:89:2a:b4:b2:59:
02:20:2a:0d:95:4e:52:05:c0:fe:44:7b:61:ec:38:f7:87:95:
8b:60:c5:89:03:d8:4e:c4:1c:0b:57:a3:de:67:45:83

125 8.8 Certificate provisioning

126 If a component supports the SPDM certificate related commands, the manufacturing process for that component

must provision a certificate chain to each component instance.

127 A possible sequence of commands to create a certificate chain include:

• Generate a certificate signing request (CSR) using the firmware of the component.

• Export the information required to form a CSR to an external utility, which generates the CSR.

• If a component uses an externally provisioned key, generate the necessary certificate as part of the external

key-generation process and load the generated key and certificate chain into the component. See Key

provisioning.

• After import, the component checks the certificate chain to ensure that its public key matches the components

Device public key.

128 This type of mechanism could be used to provision a certificate chain to one of the slots numbered 1-7. Such

mechanisms are outside of scope for this white paper and are not part of the SPDM specification.

129 Any approach for generating a certificate chain should occur as part of a secure manufacturing process. Keep

intermediate certificates above the device certificate in a secure environment that is not directly accessible to the

component so that the component cannot sign a device CSR.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

26 Published Version 1.1.0

130 8.9 Device key pair

131 Each component must contain a public and private key pair, or a device key pair, that is statistically unique to that

component. The component must retain the same device key pair for the life of the component. Any operation that

alters the device key pair invalidates any certificate chain that uses it, which causes the component to fail any

authentication request that depends on the current certificate chain.

132 Only one device key pair should be used for any of the occupied certificate chain storage slots. The SPDM

specification supports multiple encryption and hashing algorithms. The component manufacturer chooses the

algorithm for the leaf certificate from the available list in accordance with the needs of the manufacturer.

133 8.9.1 Key provisioning

134 There are two primary methods for provisioning a device key pair to a component, though there are multiple

mechanisms available to accomplish each of the methods. Any component that supports SPDM certificate or

measurement-related command sets must provision device key pairs.

135 8.9.1.1 Internal key generation

136 If capable, a component should generate its own device key pair. A component can better protect a device private

key that it generates on the component by ensuring that the device private key never made visible outside of the

component.

137 This process must be a repeatable process that always results in the generation of the same device key pair

because this is the foundation of the identity of the component. A component that generates its own device key pair

can follow a model, such as the DICE model of the Trusted Computing Group, that results in a key pair of similar

quality.

138 A component that generates its own device key pair must:

• Be provisioned with or generate and retain a cryptographically strong random number that can be used as the

Unique Device Secret (UDS).

◦ All random numbers and entropy sources should conform to the NIST SP800-90 standards.

• Have sufficient processing power or hardware support to generate a key pair by using the chosen algorithm.

• Protect the source data that the key generation process uses, as discussed in Key protection.

139 8.9.1.2 External key provisioning

140 If a component cannot meet the requirements for internal key generation, it must use an external provisioning

process. The external provisioning process allows the component manufacturer to rely on external tools and

components, such as a Hardware Security Module (HSM), to meet requirements that the component cannot meet on

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 27

its own. For instance, a manufacturer can use an external tool to provide a true random number to a component that

cannot generate sufficient entropy on its own, and use the component to complete the rest of the process.

141 External key provisioning has a trade-off because the component is in an open state until the component is

provisioned with the device key pair. To maintain trust in the component, the supply chain and manufacturing

facilities must be highly secure.

142 Any random number used as part of the key generation process should be generated in a manner that conforms to

the NIST SP800-90 standards.

143 In some cases, a user might need to re-provision a device key pair that has been provisioned to a component.

However, a component must ensure that re-provisioning cannot occur except when authorized by the user or the

component is subject to a key hijack attack. The user must also ensure that the device key pair is only re-provisioned

in a secure environment. The means to provide these protections is outside the scope of the SPDM specification.

144 8.9.2 Key protection

145 When using SPDM, the device key pair forms the foundation for proof of identity, and the device private key must be

protected from disclosure to an unauthorized party. A component should ensure that the device key pair cannot be

accessed, regenerated, or replicated if an attacker gains access to the component. The protection mechanisms

should protect the secret values from access through debug ports, an API, or other interfaces.

146 Some items that the component should protect are:

• The basis of the component identity, such as the UDS.

• The device private key.

• Any values that were used to derive or store other protected values, such as a key encryption key for the device

private key.

• When processing the SPDM specified Key Schedule, a component should erase input key material, such as

Salt_1 and the handshake secrets, as soon as they are no longer needed.

147 When the device private key is in plaintext form, it should only be stored in the internal memory of the component. To

protect the device private key, the component should clear it from memory as soon as it is no longer needed. A

component can use non-volatile memory to store its device private key but the non-volatile memory should be

protected against unauthorized access, including attempts to gain physical access to the non-volatile memory, such

as removing a flash part.

148 Any session keys should be protected from external observation and should be erased when no longer needed.

Because the session keys typically exist during runtime, the protection should include protection against reads from a

debug facility and reads through an API.

149 This protection can be implemented through a hardware mechanism that prevents unauthorized access. If the device

key pair storage is protected through encryption, the encryption key must not be one of the device keys because this

violates the NIST SP800-57 requirement that a key is used for only one purpose.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

28 Published Version 1.1.0

150 8.10 Alternatives to certificate chains

151 8.10.1 Pre-Shared Key

152 Components provisioned with a Pre-Shared Key might not require an asymmetric key pair or the use of X.509v3

certificates. Because the use of a Pre-Shared Key requires that the Requester and Responder both have knowledge

of the Pre-Shared Key, the Requester can use the Responder's knowledge of the Pre-Shared Key as proof of the

Responder's identity.

153 8.10.2 Provisioned public key

154 As an alternative to certificates, a Requester can support the ability to export a public key. This capability is reported

by setting PUB_KEY_ID_CAP=1 in the CAPABILITIES exchange. The use case for this capability includes enabling

devices that are not able to manage X.509 certificates. In this mode, the Responder's public key is provisioned to the

Requester. Following is an example sequence for this provisioning process:

1. The Responder generates or is provisioned with a key pair. See Key provisioning for more details.

2. In a secure environment, the Responder's public key is provisioned to the Requester. The means by

which the Responder's public key is provisioned to the Requester is outside of the scope of the SPDM

specification, and might use a component's private API.

3. After deployment, the Responder signs responses (when required) using the private key that

corresponds to the public key that was provisioned to the Requester. To maintain security, the

Responder must protect the private key, as noted in Key protection.

155 Note: The previous provisioning step must occur in a secure environment. Because the public key is not part of

a certificate, which is endorsed by a trusted root certificate, the source of the public key cannot be

programmatically verified. Instead, the security associated with the public key must be enforced through

physical security. Vendors should also provide protections to ensure that once a public key has been

provisioned, another one cannot be provisioned for the same purpose unless authorized to do so. Further, the

user should ensure that all affected components are placed back in a secure environment before any re-

provisioning occurs.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 29

156 9 SPDM messages

157 9.1 Compatibility between versions

158 Version encoding in the SPDM specification discusses the standard for determining whether changes are

considered backwards compatible when determining whether a change causes a minor or major version update. This

section provides additional discussion of the thought process behind this standard.

159 As the SPDM specification is a security specification, it is not reasonable to expect the SPDM specification to allow

implementations that use different versions of the SPDM specification to interoperate without any modifications.

Instead, the SPDM specification requires both the Requester and Responder to agree on the same major and minor

versions in order to interoperate. This requirement can require a component to implement a solution that supports

multiple versions of the SPDM specification, taking into account the behavioral differences between them.

160 Other than the VERSION exchange, the SPDM specification does not impose a requirement for backwards

compatibility to previous specification versions (major or minor). A component vendor can choose to remove support

for earlier versions of the SPDM specification for reasons of solution simplification or due to the vendor's security

policy.

161 The SPDM specification might change computations and other operations between different minor versions of the

specification. These changes are only allowed when the differences are dependent on the value in the SPDMVersion

field. With this standard in place, an implementation might need to perform different operations depending on the

SPDM specification version in use. See the following pseudo-code for an example of the type of operational

difference that is considered acceptable under this standard.

/* compute a signature over input 'data' */
if (spdm_version == 0x10)

spdm10_compute_signature(data);
else if (spdm_version == 0x11)

spdm11_compute_signature(data);

162 The SPDM specification can add new values to bit fields and enumerations in newer minor versions though the

existing values are retained (though possibly deprecated). The SPDM specification makes every effort to ensure bit-

wise compatibility with previous versions to ease the implementation burden. Implementers should take care to use

fields as defined. For instance, if an enumeration only provides 0 and 1 as possible values, an implementer should

be careful not to use bit-wise operations with the field as future versions of the SPDM specification might expand the

list of enumerated values to 0, 1, and 2.

163 The SPDM specification can add functionality to fields that were reserved in previous minor versions. Because

reserved fields are defined as being set to 0, newer minor versions of the SPDM specification can safely add

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

30 Published Version 1.1.0

functionality to reserved fields, using the value of 0 to indicate previous behavior. The following guidelines apply to

reserved fields:

• A component always sets reserved fields to 0.

• Do not check the contents of reserved fields. The SPDM specification states that the contents of reserved fields

are ignored by the receiver, which means that a receiver does not generate an error when a reserved field

contains a non-zero value.

• Do not modify the contents of a reserved field, as this changes transcript hashes.

164 This behavior accommodates cases where a component that supports multiple minor versions of the SPDM

specification might fill in information in reserved fields while operating at less than its highest supported minor version

number, thus simplifying implementations.

165 Functionality that is no longer recommended for use is marked as deprecated. A component might receive a

message with a value in a deprecated field, and the component can either process the message properly or return an

error. Field and value definitions associated with deprecated items are not reused within minor revisions of the same

major version.

166 9.2 Message details

167 9.2.1 GET_VERSION and VERSION exchange

168 The VERSION exchange creates an agreement between the Requester and the Responder on the major and minor

SPDM version that they use for subsequent messages. The VERSION exchange remains backwards compatible in

all future versions of SPDM.

169 A Requester must not issue commands or include parameters that the Responder does not support. The supported

command and parameter set is determined by the agreed SPDM version and the Requester's and Responder's

supported capabilities.

170 9.2.2 GET_CAPABILITIES and CAPABILITIES exchange

171 The CAPABILITIES exchange enables a Requester to query the SPDM capabilities that the Responder supports.

The goals of the message exchange are:

• Enable a Requester and Responder to discover which optional message exchanges and capabilities the

Responder and Requester supports

• Allow a Responder to inform the Requester of its cryptographic timeout requirements

172 The CTExponent enables a Responder to return its required cryptographic operation time. Because cryptographic

operations can take longer than a non-cryptographic exchange, CTExponent enables the cryptographic timeout to

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 31

respond to the needs of the individual Responder. Because the SPDM supports a variety of component types, the

CTExponent values for separate components in a system can vary greatly.

173 A Requester only issues commands that the Responder supports, with the supported command set determined by

the agreed SPDM version and the Requester's and Responder's supported capabilities.

174 Per the CAPABILITIES flags, most commands in the SPDM specification are optional. These commands are optional

to allow implementation flexibility for Responders. The Requester has responsibility to ensure that the Responder

supports enough optional commands to satisfy the Requester's security policy.

175 9.2.2.1 CAPABILITIES flags

176 This clause provides background information on each of the optional capabilities in the Flags field in the

CAPABILITIES response message.

177 Table 4 — Optional Flag field capabilities describes the optional capabilities in the Flags field in the CAPABILITIES

response message:

178 Table 4 — Optional Flag field capabilities

Capability Description

CACHE_CAP

If the Responder can cache certain messages through a reset, the Requester might skip issuing the

cached requests after a reset and instead rely on cached values. If a Responder that sets CACHE_CAP=1

has invalidated or lost its cached values, it responds to the next request, other than GET_VERSION , with an

ERROR of RequestResynch , which indicates to the Requester that it is required to restart from

GET_VERSION . See CACHE_CAP flag for more details.

CERT_CAP
GET_DIGESTS and GET_CERTIFICATE requests are related to each other. If a Responder supports

CERT_CAP , it should also support CHAL_CAP and/or MEAS_CAP .

CHAL_CAP

Indicates support for CHALLENGE . Support for the CHALLENGE exchange is optional because a Responder

might not support the cryptographic operations or other capabilities required for the CHALLENGE_AUTH

response. A Requester might support a standalone CHALLENGE or use MEASUREMENTS to accomplish a

challenge. However, Requesters should remember that if a Requester sends a GET_MEASUREMENTS

without first completing a CHALLENGE exchange, the transcript is nullified and the Requester does not

know whether an entity altered the response data.

MEAS_CAP

Indicates support for MEASUREMENTS . Support is optional because a Responder might not support the

cryptographic operations or other capabilities required for the MEASUREMENTS response. A Requester

might either support a standalone CHALLENGE or use MEASUREMENTS to accomplish a challenge operation.

MEAS_FRESH_CAP

Indicates whether the Responder supports the ability to recompute measurements in response to a

GET_MEASUREMENTS request. The value of this capability can influence the Requester's policy. A device

that does not support fresh measurements must be reset to capture new measurements.

ENCRYPT_CAP
Indicates support for encryption. Requires either PSK_CAP or KEY_EX_CAP so that keys can be

established for the secure session. Use of ENCRYPT_CAP also requires use of MAC_CAP .

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

32 Published Version 1.1.0

Capability Description

MAC_CAP
Indicates support for authenticated messages. Requires either PSK_CAP or KEY_EX_CAP so that keys can

be established for the secure session. Can be used with ENCRYPT_CAP .

MUT_AUTH_CAP Indicates support for mutual authentication. If set, it requires support for encapsulated requests.

KEY_EX_CAP Indicates support for key exchange, which is used with ENCRYPT_CAP or MAC_CAP .

PSK_CAP
Indicates support for Pre-Shared Key. Pre-Shared Key enables the use of Secured Messages by less

capable devices. If supported, ENCRYPT_CAP or MAC_CAP are set.

HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Responder can only send and receive SPDM defined messages without encryption and

message authentication during the Session Handshake Phase. Whether a Requester accepts a

Responder that does not set this bit is a function of the Requester's security policy.

PUB_KEY_ID_CAP
If set, the public key of the Responder was provisioned to the Requester using a mechanism that is

outside of scope for the SPDM Specification.

179 9.2.2.2 CACHE_CAP flag

180 9.2.2.2.1 Multiple caching Requesters

181 For components that support CACHE_CAP , the support of a cached Negotiated State requires the component to be

able to distinguish between Requesters so that it can correctly associate the cached Negotiated State with the

appropriate Requester. Per the SPDM specification, the Negotiated State is between a given Requester and

Responder pair, and remains valid until the next issuance of GET_VERSION or until the Responder decides to delete

the associated Negotiated State . The mechanism to identify that a request originated from a different Requester is

out of scope for the SPDM specification because it might require information from the transport layer. Any

implementation of such a mechanism is transport specific but an example of a mechanism is that an MCTP-based

implementation can track the Source Endpoint ID associated with a state identifier (using a mechanism that is out

of scope for the SPDM specification) and invalidate the cached Negotiated State on any request that originates

from a different Source Endpoint ID . Note that implementations should take care to reliably identify devices across

resets, especially on buses that re-enumerate themselves and might allocate different identifiers to devices after

each reset.

182 9.2.2.2.2 Negotiated State validity

183 Support for CACHE_CAP requires both the Requester and Responder to manage the validity of the Negotiated

State . Requesters and Responders should only save a Negotiated State after a successful CHALLENGE

exchange. Prior to a successful CHALLENGE exchange, a Negotiated State is subject to attack.

184 After a Negotiated State has been established, a Requester should take steps to detect a firmware update on the

Responder. If the Requester detects a firmware update, the Requester should invalidate the current Negotiated

State , issue the GET_VERSION request through CHALLENGE_AUTH request, and establish a new Negotiated

State .

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 33

185 9.2.3 NEGOTIATE_ALGORITHMS and ALGORITHMS exchange

186 The ALGORITHMS exchange enables the Requester and Responder to agree on the cryptographic algorithms that the

components use for subsequent exchanges. The Responder should select the strongest algorithms that the

Requester provides. After the ALGORITHMS exchange is complete, the Requester and Responder have an agreed set

of algorithms to use in subsequent message exchanges. Certain values in the response message depend on fields in

the CAPABILITIES exchange.

187 The extended ExtAsym and ExtHash algorithm fields in the ALGORITHMS exchange enable expansion to additional

algorithms to meet custom requirements. The Requester and Responder should prefer the BaseAsymAlgo and

BaseHashAlgo fields if they can agree on them.

188 If the Responder has set CERT_CAP=1 and/or CHAL_CAP=1 , the Responder must select algorithms that correspond

to a certificate chain that the Responder possesses. To ensure compatibility, the Requester should support a variety

of algorithms.

189 9.2.4 GET_DIGESTS and DIGESTS exchange

190 The DIGESTS exchange enables the Requester to retrieve the digests (hashes) of the certificate chain(s) stored on

the Responder. The Requester can use the DIGESTS exchange to determine whether the certificate chain(s) stored

on the Responder have changed. The Requester should store at least the public key from the leaf certificates along

with the digest(s). The Requester can use the DIGESTS exchange as a shortcut to skip the retrieval of individual

certificate chains, as the retrieval process can be slow on slower interfaces.

191 The DIGESTS response is not signed, so it is susceptible to replay attacks. It should be followed with a CHALLENGE

or GET_MEASUREMENTS command to ensure that the Responder knows the private key.

192 9.2.5 GET_CERTIFICATE and CERTIFICATE exchange

193 The CERTIFICATE exchange enables a Requester to retrieve one or more certificate chains from the Responder.

The CERTIFICATE response is potentially very large so a Requester might use the Offset and Length fields in the

GET_CERTIFICATE request to issue multiple requests.

194 9.2.6 CHALLENGE and CHALLENGE_AUTH exchange

195 The CHALLENGE exchange enables the Requester to ensure that the Responder knows the private key associated

with a certificate chain. The CHALLENGE request and CHALLENGE_AUTH response contain several fields of note:

• Both the request and response messages contain Nonce fields, to protect against replay and chosen message

attacks.

• The response contains a CertChainHash field, which the Requester can use to refute the DIGESTS or

CERTIFICATE response.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

34 Published Version 1.1.0

• The response might contain a MeasurementSummaryHash field, which is a measurement of the concatenation of

all elements of the TCB for the Responder.

• The OpaqueDataLength and OpaqueData fields are intended to be defined by a binding specification. The

specific location of these fields ensures that they are included in the CHALLENGE_AUTH signature.

• The Signature field is generated according to the signature-generation process in the CHALLENGE_AUTH

signature generation clause of the SPDM specification. The goal of the signature is to show that the Responder

is the entity that has been responding to the Requester for earlier message exchanges, and that the Responder

knows the private key associated with the public key in the leaf certificate of the certificate chain.

196 Although the use of Nonce fields in both the CHALLENGE request and the CHALLENGE_AUTH response messages

protects against replay attacks, an adversary with physical access to the component can leverage the fact that a

component responds to any correctly formed CHALLENGE with a signed response to perform side channel analysis,

chip-clip attacks, or similar approaches to extract the component's private key.

197 Mitigations to such concerns should be applied at the implementation level, for example through steps such as those

that the Key protection clause discusses. The SPDM protocol can require that request messages are authenticated,

that is signed, as an additional protection for this class of threats. However, this requirement results in a significantly

more complex protocol overall, increases message overhead unnecessarily in cases where Requester authentication

is not supported, such as feature-limited Responders, and, ultimately, does not prevent adversaries who can produce

CHALLENGE messages signed by a certificate chain trusted by the Responder from pursuing such avenues of attack.

198 9.2.6.1 Unique MeasurementSummaryHash

199 To prevent a potential length extension attack, a Responder should ensure that each MeasurementBlock used in a

MeasurementSummaryHash is unique from any other MeasurementBlock in the given MeasurementSummaryHash .

This applies to all uses of MeasurementSummaryHash . The exposure to a potential length extension attack is only in

cases where the Requester does not issue GET_MEASUREMENTS and instead relies on the MeasurementSummaryHash

alone to determine the state of the Responder.

200 9.2.7 GET_MEASUREMENTS and MEASUREMENTS exchange

201 The MEASUREMENTS exchange enables the Requester to query the measurements of the firmware, the software, or

configuration of a Responder.

202 In the GET_MEASUREMENTS request, the signature is optional. In some cases, Responders might not be able to create

signatures, but can still return measurements. A Requester might refuse to operate with a Responder that does not

support signed measurements. When specified, the MEASUREMENTS response is signed, showing that the Responder

originated all MEASUREMENTS responses and has knowledge of the private key that is associated with the public key

in the leaf certificate of the specified certificate chain.

203 The MEASUREMENTS exchange is designed to work with measurements of static data, which is data that does not

change except in response to a user action. The MEASUREMENTS exchange does not handle measurement of

dynamic values that can change without user action, such as the speed of a fan.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 35

204 9.2.7.1 Summary measurements

205 The MEASUREMENTS exchange does not support a mechanism to request a summary measurement option, meaning

that there is not a mechanism to request that a Responder hash together all of its measurements and return a single

hash of those measurements. A Requester might want to implement a summary measurement mechanism on its

own to periodically check for changes in the underlying measurements, such as firmware configuration changes that

happen outside of the purview of Requester. Another use case for a summary measurement mechanism is to

monitor a component for firmware updates that happen outside of the purview of the Requester, though a firmware

update and component reset also causes the component to return ErrorCode = RequestResync . Note, periodic

polling for measurements and use of summary measurements are optional behaviors.

206 If a Requester requires a summary measurement capability, the Requester should assemble its own summary

measurement from the MEASUREMENTS responses from a given Responder. The Requester can check the stored

summary by issuing one or more GET_MEASUREMENTS requests, regenerating the summary measurement, and

checking the new summary measurement against the previous summary measurement.

207 In addition, a Requester that only needs a summary of the Responder's measurements can retrieve the summary

through the MeasurementSummaryHash field in the CHALLENGE_AUTH response. By doing so, a Requester can avoid

sending the MEASUREMENTS request and complete authentication faster.

208 9.2.7.2 Firmware debug indication

209 The MEASUREMENTS response includes a mechanism to return a measurement of firmware configuration. If a

component typically operates in a mode that restricts debug access, it is recommended that the component use at

least one measurement to indicate whether debug restrictions are in place. In this case, the component should alter a

firmware configuration measurement when it enters debug mode. This measurement should remain altered until the

component is reset. If the user subsequently disables debug mode, the component should continue to report an

altered firmware configuration measurement until reset to ensure that a Requester can detect a case where a debug

capability has been enabled and disabled before the Requester can detect it. The measurement index and definition

of any debug mode measurement is vendor specific.

210 9.2.7.3 MEASUREMENTS only components

211 Some components might only support the MEASUREMENTS capability, but not support the ability to sign the

measurements. Such a component sets CERT_CAP=0 , CHAL_CAP=0 , and MEAS_CAP=1 in the CAPABILITIES

response message. This capabilities configuration is desirable in some cases, such as in a component with minimal

processing capabilities. If a component like this exists, a Requester should carefully consider whether to trust the

measurement that is returned by the Responder.

212 9.2.8 Encapsulated request flows

213 In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request

messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

36 Published Version 1.1.0

transport. Message encapsulation, which preserves the roles of Requester and Responder as far as the transport is

concerned but enables the Responder to issue its own requests to the Requester, addresses cases like these.

214 The GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONSE request messages,

(ENCAPSULATED_REQUEST) and ENCAPSULATED_RESPONSE_ACK response messages facilitate the encapsulated

request flow.

215 The encapsulated requests flow is used in limited scenarios, such as mutual authentication, and cannot be used for

general purpose SPDM message encapsulation. Only certain requests and their corresponding responses, including

ERROR , can be encapsulated. For details, see DMTF DSP0274.

216 9.2.9 Secure session messages

217 A number of capabilities Flags are related to managing secure sessions, and many of the capabilities are used in

conjunction with each other. The Secured Messages-related capabilities Flags are:

• ENCRYPT_CAP

• MAC_CAP

• MUT_AUTH_CAP

• KEY_EX_CAP

• PSK_CAP

• ENCAP_CAP

• HBEAT_CAP

• KEY_UPD_CAP

• PUB_KEY_ID_CAP

218 Many of the capabilities Flags have dependencies on each other, which are explained in the SPDM Specification.

One dependency relationship of note is that the use of ENCRYPT_CAP requires the use of MAC_CAP . SPDM-Secured

Messages that use encryption require the use of message authentication because the SPDM Specification does not

support any use case for messages that are only encrypted because the use of such messages can result in a

receiver decrypting messages from an attacker.

219 9.2.10 VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE exchange

220 The VENDOR_DEFINED_RESPONSE exchange enables a Requester and Responder pair to exchange information that

the SPDM specification does not otherwise cover. A component vendor or another standards body can define

request and response messages. For more information on implementations by other standards bodies, see Partner

implementations.

221 9.2.11 RESPOND_IF_READY sequence

222 The RESPOND_IF_READY sequence allows for situations when the Responder cannot respond in a reasonable time.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 37

The time to a final response, which fulfills a RESPOND_IF_READY request, is still bound by the timing parameters that

the SPDM specification defines.

223 The design intent of the RESPOND_IF_READY sequence is to enable components to cooperate with a larger system

while performing long operations, such as signing. One reason to use RESPOND_IF_READY during a long operation is

to release a shared bus to enable other components to use the bus during the operation.

224 9.3 Message exchanges

225 The SPDM specification specifies ordering rules for message exchanges and the transcript hash that is generated

from those message exchanges. To reduce the complexity associated with message sequencing, the SPDM

specification defines valid sequences including options for use cases that cache certain responses.

226 During the SPDM message exchanges, the Requester can drop communication with a Responder if the Responder

violates a policy that the Requester holds, such as when the Responder negotiates too low of a version or the

Responder returns too many errors.

227 The SPDM specification defines some messages as optional, such as CHALLENGE , which permits a variety of

implementation permutations. Ultimately, the Requester implementation controls the policy that it wants to use and

the SPDM specification grants the Requester some degree of implementation latitude. For instance, a security-

sensitive Requester might reissue all requests on every reset while a more permissive Requester might cache

certificate digests and skip the CHALLENGE on each reset. The Responder should make no assumptions about the

security policy of the Requester.

228 9.3.1 Multiple Requesters

229 The tracking for message sequences is on the basis of a Requester and Responder pair, and a Responder can

optionally support tracking more than one Requester and Responder pair. If a Responder receives requests from

Requesters A and B, for instance, the Responder must track message payloads for the successful message

exchanges with both Requester A and Requester B. A Responder has limited resources for tracking message

exchanges, and might take steps to both limit the number of supported Requesters and reclaim resources that it has

used to track exchanges with a given Requester. The exact mechanisms to do so are out of scope of the SPDM

specification.

230 If a Responder supports communication with only a single Requester at a time, the Responder does not need to

track the Requesters because communication with a new Requester starts with the GET_VERSION request and

causes the Responder to discard any existing tracked messages. This type of implementation can cause problems in

complex environments due to constantly restarting message sequences.

231 For implementations that use an MCTP transport, the MCTP Endpoint ID is the recommended method for tracking

the Requester (see DMTF DSP0275). For other binding specifications, the binding specification should document the

Requester tracking method.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

38 Published Version 1.1.0

232 9.3.2 Message timeouts and retries

233 The Timing specification for SPDM Messages table in the SPDM specification lists a number of interrelated

timeout values. The RTT value is the worst-case value for a message round trip based on the transport. The RTT

value might be less than the CT value. If so, the Responder must respond with ErrorCode = ResponseNotReady

within the RTT-specified time.

234 This mechanism ensures that Responders release the bus in a timely manner. After a Responder returns

ErrorCode = ResponseNotReady , the Requester can issue a request to another Responder or wait for the time

specified by RDTExponent and issue RESPOND_IF_READY . During this time, the Requester should not issue any

request to the Responder other than RESPOND_IF_READY .

235 The SPDM specification allows for retries of messages after a timeout has occurred. In a retry scenario, a Requester

retries the same request as before. Specifically, a retry of a CHALLENGE or GET_MEASUREMENTS request reuses the

same nonce as the request that timed out so that the transcript hash calculation is not disrupted. A paranoid

Requester can choose not to retry a request and instead return to GET_VERSION and restart the message sequence.

236 Certain SPDM protocol interactions involve the exchange of multiple messages, during which state information is

maintained. For example, multiple GET_MEASUREMENTS messages might be issued in a sequence requesting

individual unsigned measurements, with the Responder maintaining a message transcript to be signed at the end of

the sequence. While individual requests and responses might be issued within the permitted timeout parameters, a

malicious or buggy Requester might consume resources at the Responder by starting but never completing such

multi-message interactions. This issue might be accentuated if a Responder interacts with more than one Requester

in parallel, maintaining a number of active states. It is advised that SPDM implementations implement protections

against such resource exhaustion scenarios by maintaining session limits, timeouts or similar mechanisms to detect

and reset a misbehaving session when necessary. In this context, a session denotes an ongoing exchange of SPDM

messages between a Requester and Responder pair.

237 9.3.2.1 Secured Messages retries

238 The Secured Messages using SPDM Specification 1.0.0 (DSP0277) indicates that it is permissible for a component

to include the sequence number in a message to help the receiver process a retry or out of order delivery if the

transport protocol does not provide a mechanism to reconstruct the proper message order. SPDM Secured

Messages are based on IETF TLS DTLS13-43, which indicates that including the sequence number is not

considered a potential attack vector because section 3 of IETF TLS DTLS13-43 adds the sequence number to the

datagram record.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 39

239 10 Attestation and security policies

240 This clause provides guidelines on:

• Attestation policies that can be implemented using the SPDM Specification.

• Security policies that can accompany such an implementation.

241 This clause is not exhaustive and should be considered informative. The details of any policy are vendor defined.

242 10.1 Certificate authorization policy

243 Trusting the device certificate and its security policy is confined to the authentication initiator's security policies. The

SPDM authentication process involves retrieving the device certificate digests first and comparing them with the

cached digests, or the trust store database. If not found in the cached trust store database, the Requester sends the

GET_CERTIFICATE request. The responder returns the certificate based on the requested length and offset, as Figure

5 — Example certificate authentication policy shows. It is recommended that the Requester perform certificate

verification procedures before storing the corresponding digest to the trust store.

244 Figure 6 — Example certificate authentication policy

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

40 Published Version 1.1.0

245

246 The following initiator security policies can verify device certificates:

1. Generate warnings for components that do not support the SPDM.

2. Generate warnings for components that have certificate chains where root CA is not in the initiator's

trust store database.

3. Quarantine components that have certificate chains where the root CA certificate is not in the trust

store database.

247 10.2 Measurement

248 In addition to providing the hardware identity through a certificate, an authenticated endpoint can also be queried to

provide the firmware identity. The firmware identity in this case refers to firmware code and configuration data. The

value provided by the endpoint is a measurement. Using the GET_MEASUREMENTS command, the Requester can use

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 41

a single command to ask for an individual or all measurements. The returned values can be in form of a hash value

or a bit stream and the Requester can specify whether the measurements must be signed to verify that the

measurements originated with the Responder endpoint.

249 The Requester can, in turn, compare the returned measurements to known values. The Requester can either verify

the measurements locally or remotely. The mechanism to obtain reference measurement values is outside of scope

for the SPDM Specification.

250 10.3 Secured Messages policy

251 The addition of Secured Messages enables Requesters and Responder to apply policies surrounding their use. For

example, a Responder might not accept certain vendor defined messages that it deems to be potentially destructive

unless it receives those commands in a Secured Message. Another example is that a Requester might not support

communication with a Responder of a certain component class unless the component supports authenticated

encrypted Secured Messages.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

42 Published Version 1.1.0

252 11 Secured Messages

253 Version 1.1.1 of the SPDM specification enables the use of Secured Messages.

254 11.1 Secured Message layering

255 This section discusses the layering of secure messages. The examples in the section are presented to illustrate the

concepts used in secure message layering, but are not intended to prescribe an implementation.

256 11.1.1 Secured Message send

257 Figure 7 — Secured Message send shows how layers are assembled when sending a Secured Message. The

following describes the steps in the message assembly, moving from the top of the diagram to the bottom.

1. The component builds the message to be sent. This message can be any MCTP message type, as

DMTF DSP0239 defines.

2. The component adds an MCTP header, setting the MCTP type and Integrity Check (IC) for the

message. The result is the message to be encapsulated, which is the Application Data.

3. The component adds the Application Data Length and Random Data fields, as DMTF DSP0277

defines.

4. The component adds the Associated Data to the message, which is comprised of Transport

Version , Length and Session ID as DMTF DSP0277 defines.

5. The component encrypts the message contents that were built over the previous steps, resulting in the

ciphertext of the message. The component then generates a MAC over the message contents,

including the ciphertext and the Associated Data. The encryption and MAC generation are typically

handled by the AEAD algorithm.

6. The component appends the MAC to the message.

7. The component adds the MCTP header for the Secured Message, which is set to MCTP message

type 6, as DMTF DSP0276 describes. This results in the Secured Message.

8. The component transmits the message as a sequence of one or more packets, as DMTF DSP0236

describes.

258 Figure 7 — Secured Message send

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 43

259

Message

Message

Message

Message

E-MsgType=XE-IC:0

1. Message to be sent
2. Form Sec Msg App Data
(277) by adding E-IC and E-
MsgType (defined by 239)
according to (276)
3. Form Sec Msg Plaintext
(277) by prepending App Data
Length and appending
Random Data
4. Form Sec Msg inputs by
adding associated data (277)

E-MsgType=XE-IC:0 Rnd DataApp Data Len

Rnd DataE-MsgType=XE-IC:0App Data LenLenSessID

Ciphertext MAC

Keyed MAC generation

6. Form MCTP msg by
adding IC & MsgType 0x06
for Secured Messages (276)

MsgType=6IC:0 Ciphertext MAC

5. Apply AEAD
Encryption and
MAC generation (277)

7. Fragment MCTP Msg into
MCTP packet payloads, add
MCTP packet headers, and
deliver MCTP packet to
destination (236)

PSeq

LenSessID PSeq

LenSessID PSeq

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

CiphertextLenSessID PSeq

Encryption

Secure Message Application data

Secure Message plaintext

Secure Message
associated data

Maximum MCTP Packet payload length depends on the PHY for the delivery path.

1B

2B

8B

Variable

Default 16B
1B

Message of type support by MCTP, e.g. PLDM, SPDM

260 11.1.2 Secured Message receive

261 Figure 8 — Secured Message receive shows how layers are disassembled and authenticated when receiving a

Secured Message. The following describes the steps in the message disassembly, moving from the top of the

diagram to the bottom.

1. The component receives the message as a sequence of one or more packets, as DMTF DSP0236

describes, and reassembles the packets in an MCTP message.

2. The component reads the MCTP header to determine whether this is a Secured Message, which is

indicated by MCTP message type 6 as DMTF DSP0276 describes. The MCTP header of the Secured

Message is removed.

3. The component verifies the MAC by computing a MAC of the message and comparing it to the MAC

field from the message.

4. The component removes the MAC field from the message.

5. The component uses the Associated Data from the message to decrypt the ciphertext. The decryption

and MAC verification are typically handled by the AEAD algorithm.

6. The component removes the Associated Data from the message, leaving the plaintext of the Secured

Message, as DMTF DSP0277 describes.

7. The component removes the Application Data Length and Random Data fields, as DMTF

DSP0277 defines. The result is the encapsulated message.

8. The component processes the message.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

44 Published Version 1.1.0

262 Figure 8 — Secured Message receive

263

7. Process E-IC & E-MsgType
(276) to identify applicable
protocol (according to 239)

5. Remove associated data,
leaving Sec Msg Plaintext
(277)

MAC verification

Decryption

3. Remove MCTP msg
headers leaving Sec Msg
outputs (276)

2. MCTP MsgType=0x06
indicates Sec Msg/MCTP in
payload (276)

1. Receive MCTP packets,
process MCTP packet headers &
reassemble MCTP packet
payloads into MCTP Msg (0236)

4. Apply AEAD
MAC verification

and decryption -can
occur in parallel (277)

6. Process App Data Len +
remove Rnd Data, resulting in
Encapsulated MCTP msg App
Data (277)

MsgType=6IC:0 Ciphertext MACLenSessID PSeq

Ciphertext MACLenSessID PSeq

Message Rnd DataE-MsgType=5E-IC:0App Data LenLenSessID PSeq

CiphertextLenSessID PSeq

Message Rnd DataE-MsgType=5E-IC:0App Data Len

MessageE-MsgType=5E-IC:0

Message

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

MCTP Packet
Payload

264 11.2 Secured Message error handling

265 If an error occurs during the Session Handshake phase or if an error happens during a secure session, the

Negotiated State is preserved. The Negotiated State is preserved through errors unless the Requester sends

an END_SESSION request with Negotiated State Preservation Indicator=1 to terminate the session or sends a

GET_VERSION request to reset the session.

266 If a timeout occurs during a secure session, the Requester can retry the message that failed. The retry is sent without

modification. In this case, the Requester technically has more than one message outstanding to the same Responder

but this is allowed because the second message is only a retry of the first message. Optionally, the Requester can

send a GET_VERSION request to reset all sessions.

267 11.3 Random data

268 DSP0277 specifies that a component should set the Random Data field to a random length and fill it with random

data. A component is allowed to set the length of Random Data to 0, or to fill the Random Data field with fixed

values. However, there are benefits to using Random Data as DSP0277 suggests, including:

• Setting the length of Random Data to a random value can obfuscate the data being transmitted. An observer

might gather information about the communication by observing the length of messages between two

components and including data of random length hides the transmission from such an observation.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 45

• Setting the contents of Random Data to random values ensures that all inputs to the encryption algorithm are

unique. In the case of repeated encapsulated messages, the inclusion of random data values ensures that input

plaintext to each encryption operation is unique.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

46 Published Version 1.1.0

269 12 Protection of internal secrets

270 This section describes recommended practices to protect a component's internal secrets.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 47

271 13 Root of Trust

272 A Root of Trust provides the basis for trust in one or more security related function. All Root of Trust functions that

the following clauses list can be implemented in one or multiple entities. An implementer should consider the

following roots of trust when implementing an SPDM solution.

273 13.1 Root of Trust for detection

274 The foundation of component trust relies on the internal security of the component. During the component-boot

process, the component performs a signature verification of each firmware stage to ensure that the firmware is

authentic and no unauthenticated code has been injected into the firmware image. Examples of how to accomplish

this task include using a static Root of Trust for detection that can authenticate subsequent stages of the boot

process. If the signature verification fails during the boot process, the component can halt, boot to a recovery

partition, or follow another recovery path for the platform that also conforms to the security policy. For more details on

a Root of Trust for firmware authentication, see NIST SP800-193. As NIST SP800-193 indicates, the

275 ...central tenet to the firmware protection guidelines is ensuring that only authentic and authorized firmware

update images may be applied to platform components.

276 13.2 Root of Trust for measurement

277 The SPDM implementation relies on the integrity of reported measurements. The Root of Trust for measurement is

responsible for measurement of the elements, such as firmware images, that the MEASUREMENTS response reports,

and for storing these measurements in a secure fashion.

278 13.3 Root of Trust for reporting

279 A Root of Trust for reporting ensures that values reported in SPDM responses accurately reflect the reported

underlying state or condition. The Root of Trust for reporting ensures that other software in the system or an

unauthorized user does not alter reported values.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

48 Published Version 1.1.0

280 14 Partner implementations

281 DMTF partners with other standards bodies to enable those bodies to use SPDM on other interfaces and protocols.

282 14.1 Partner binding specifications

283 DMTF enables partner standards bodies to create SPDM bindings for their specifications. Other binding

specifications should provide the following guidance:

• Alterations to the Subject Alternative Name and Common Name fields in the certificate.

• Guidance on the vendor identification in the certificate.

• Bus timing and timeout requirements, including RTT.

• Use of OpaqueData fields in CHALLENGE_AUTH and MEASUREMENTS responses.

• Method to track messages from multiple Requesters, as Multiple caching Requesters describes.

284 14.2 Enabling partner implementations

285 The SPDM specification has several mechanisms to enable partner implementations.

286 14.2.1 OpaqueData

287 Many messages include fields for OpaqueData and OpaqueDataLength . These fields are for partner standards

bodies to use to meet their requirements to include additional data in the SPDM messages. By including these fields

in the messages, the contents of the fields are also covered by message transcripts and signatures.

288 If a standards body requires the use of the OpaqueData fields, then the standards body in question is responsible for

documenting the proper use of the OpaqueData fields.

289 14.2.2 Registry or standards body ID

290 Several message exchanges include a field for Registry ID or StandardID , which allows the use of enumerations

and field definitions that are defined by partner standards bodies. If a standards body requires an additional Registry

or standards body definition, the standards body should work with DMTF to define a new Registry or standards

body ID in the SPDM specification.

291 14.2.3 Vendor-defined commands

292 The SPDM Specification has an allowance for vendor defined commands, using the VENDOR_DEFINED_REQUEST and

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 49

VENDOR_DEFINED_RESPONSE messages. These messages include fields to provide a vendor ID for the vendor that

defined the command, and to accommodate vendor IDs that are defined by multiple standards bodies.

293 In addition to the use of vendor-defined commands by component vendors, a standards body itself can define

vendor-defined commands, in which case the standards body assigns itself a vendor ID of the type of its vendor ID.

294 If a standards body is not listed in the Registry or standards body ID table in the SPDM specification and there is a

requirement to add a command using an ID from that standards body, then the standards body should work with

DMTF to allocate an ID to the table to avoid potential conflicts.

295 14.2.4 Certificates with partner information

296 The SPDM specification defines information that is stored in a certificate, and all such information is identified using a

unique OID. Partner standards bodies and component vendors can also define information to be stored in a

certificate.

297 The following certificate gives an example of such a certificate. This certificate contains SPDM specification defined

information in the Subject Alternative Name otherName identified by the OID 1.3.6.1.4.1.412.274.1. The partner

organization information is found in a second Subject Alternative Name otherName field, and identified by the

OID 1.2.3.4.5.6.7.1. Requesters that process certificates can read the OID for each Subject Alternative Name

otherName to help Requester correctly interpret the associated data.

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 4098 (0x1002)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C = US, ST = NC, L = City, O = ACME, OU = ACME Devices, CN = CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 11:59:59 9999 GMT

Subject: C = US, ST = NC, L = City, O = ACME Widget Manufacturing, OU = ACME Widget Manufacturing Unit, CN = x0123456789
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

00:c7:d6:81:6b:16:fa:c9:a9:de:60:8a:3b:3e:c6:
11:a2:fd:48:d2:e9:e8:d2:f5:d4:10:08:06:ad:ee:
14:76:b7:41:15:88:c9:c1:d0:5a:58:08:b7:f0:04:
bb:85:31:43:2f:3a:c9:53:67:99:9e:fc:b6:af:70:
bb:1d:ef:b1:6d:69:fb:38:57:c7:71:da:fe:2b:fd:
bf:18:81:15:c6:e1:cb:1c:65:54:5f:de:04:f7:f6:
a1:f9:b3:8b:40:12:69:05:23:7c:15:41:27:ac:65:
6c:d9:66:f4:eb:3c:b8:4f:f6:5a:4d:7a:26:ad:2f:
66:2b:cd:28:7c:d6:a6:ae:71:70:c8:0e:a8:3e:a3:
a1:96:d4:65:41:e2:01:a8:34:15:ef:50:ce:99:3f:
1d:38:ba:5c:53:37:d2:f3:46:94:08:ee:22:87:e2:

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

50 Published Version 1.1.0

90:7b:25:cf:6e:b0:cd:05:f1:e3:b7:5a:ee:f7:4f:
9d:70:74:81:86:8d:5e:14:af:37:24:d0:39:71:3c:
05:c2:a5:1c:a3:a1:5e:6b:f7:9e:5d:cf:c2:67:b9:
a3:f2:e6:62:c9:96:97:e3:5e:83:c6:14:dd:4c:8b:
53:87:7e:43:a2:81:28:4d:41:d1:48:b2:c9:c8:b2:
53:ff:ce:82:d8:f9:ed:48:5a:87:fd:85:19:dc:ea:
07:e5

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Authority Key Identifier:
CB:0C:55:D9:4F:18:EE:B9:54:25:3D:08:1A:4C:02:24:80:BF:CF:FE

X509v3 Key Usage: critical
Digital Signature

X509v3 Subject Alternative Name:
othername: 1.3.6.1.4.1.412.274.1::ACME:WIDGET:0123456789, othername: 1.2.3.4.5.6.7.1::Vendor=ACME:Device=WIDGET:SN=0123456789

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

30:46:02:21:00:f1:a5:9b:1f:6e:ac:9d:11:24:d5:da:6f:2c:
ea:c1:93:e8:0c:58:38:c9:66:38:5c:96:20:75:a7:77:5d:20:
c5:02:21:00:88:30:e4:f0:2e:82:e4:45:93:84:e5:23:58:2d:
90:c3:32:51:6f:a0:35:c8:7f:a4:6b:21:01:0a:13:db:26:92

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 51

298 15 ANNEX A (informative) change log

299 15.1 Version 1.0.0 (2020-05-13)

• Initial Release

300 15.2 Version 1.1.0 (2022-01-04)

• Update content and diagrams to match Security Protocol and Data Model (SPDM) Specification 1.1.1

(DSP0274)

• Restructure several sections to improve readability, including:

◦ Certificates.

◦ Partner implementations.

• Update references to latest versions.

• Removed statement about possible re-provisioning of the certificate chain in slot 0.

• New:

◦ Add Authenticated Encryption with Associated Data (AEAD) to the introduction.

◦ Add discussion of new Message details and CAPABILITIES Flags.

◦ Add discussion of Pre-Shared Key.

◦ Add discussion of details for use of the CACHE_CAP flag.

◦ Add discussion of complexities around Certificate chain algorithms and implementation considerations.

◦ Discuss validation of certificate chains in Certificate requirements.

◦ Clarify use of MeasurementSummaryHash versus Summary measurements.

◦ Clarify that SPDM code is in the SPDM Trusted Computing Base.

◦ Add Figure 3 — SPDM security stack.

◦ Add Secured Message layering example.

◦ Add an example of Certificates with partner information.

◦ Add discussion of Secured Messages and Secured Messages policy.

◦ Add a section for Alternatives to certificate chains.

◦ Add discussion of Vendor defined commands.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

52 Published Version 1.1.0

301 16 Bibliography

302 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.1.0 Published 53

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Architecture White Paper
	1 Abstract
	2 Foreword
	2.1 Acknowledgments
	3 References
	4 Terms and definitions
	5 Introduction
	5.1 Typographical conventions
	5.2 Authentication
	5.3 Authenticated Encryption with Associated Data (AEAD)
	5.4 Security Platform and Data Model (SPDM) architecture
	5.5 SPDM standards overview
	5.6 Threat model
	6 SPDM concepts
	6.1 PMCI stack
	6.2 Other bindings
	7 SPDM trusted computing base
	8 Certificates
	8.1 Background on certificates
	8.2 Certificate overview
	8.2.1 Certificate chain validation

	8.3 SPDM certificate slots
	8.3.1 Stored certificate chain format

	8.4 Certificate chain algorithms
	8.4.1 Certificate chain verifier compatibility

	8.5 Certificate requirements
	8.5.1 Certificate retrieval
	8.5.2 Certificate fields

	8.6 Interpreting certificate contents
	8.7 Example leaf certificate
	8.8 Certificate provisioning
	8.9 Device key pair
	8.9.1 Key provisioning
	8.9.1.1 Internal key generation
	8.9.1.2 External key provisioning

	8.9.2 Key protection

	8.10 Alternatives to certificate chains
	8.10.1 Pre-Shared Key
	8.10.2 Provisioned public key

	9 SPDM messages
	9.1 Compatibility between versions
	9.2 Message details
	9.2.1 GET_VERSION and VERSION exchange
	9.2.2 GET_CAPABILITIES and CAPABILITIES exchange
	9.2.2.1 CAPABILITIES flags
	9.2.2.2 CACHE_CAP flag
	9.2.2.2.1 Multiple caching Requesters
	9.2.2.2.2 Negotiated State validity

	9.2.3 NEGOTIATE_ALGORITHMS and ALGORITHMS exchange
	9.2.4 GET_DIGESTS and DIGESTS exchange
	9.2.5 GET_CERTIFICATE and CERTIFICATE exchange
	9.2.6 CHALLENGE and CHALLENGE_AUTH exchange
	9.2.6.1 Unique MeasurementSummaryHash

	9.2.7 GET_MEASUREMENTS and MEASUREMENTS exchange
	9.2.7.1 Summary measurements
	9.2.7.2 Firmware debug indication
	9.2.7.3 MEASUREMENTS only components

	9.2.8 Encapsulated request flows
	9.2.9 Secure session messages
	9.2.10 VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE exchange
	9.2.11 RESPOND_IF_READY sequence

	9.3 Message exchanges
	9.3.1 Multiple Requesters
	9.3.2 Message timeouts and retries
	9.3.2.1 Secured Messages retries

	10 Attestation and security policies
	10.1 Certificate authorization policy
	10.2 Measurement
	10.3 Secured Messages policy
	11 Secured Messages
	11.1 Secured Message layering
	11.1.1 Secured Message send
	11.1.2 Secured Message receive

	11.2 Secured Message error handling
	11.3 Random data
	12 Protection of internal secrets
	13 Root of Trust
	13.1 Root of Trust for detection
	13.2 Root of Trust for measurement
	13.3 Root of Trust for reporting
	14 Partner implementations
	14.1 Partner binding specifications
	14.2 Enabling partner implementations
	14.2.1 OpaqueData
	14.2.2 Registry or standards body ID
	14.2.3 Vendor-defined commands
	14.2.4 Certificates with partner information

	15 ANNEX A (informative) change log
	15.1 Version 1.0.0 (2020-05-13)
	15.2 Version 1.1.0 (2022-01-04)
	16 Bibliography

