
Document Identifier: DSP2044

Date: 2016-06-15

Version: 1.0.2

Redfish White Paper

Document Class: Informative

Document Status: Published

Document Language: en-US

Copyright Notice

Copyright © 2014-2017 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document’s normative language is English. Translation into other languages is permitted.

Redfish White Paper DSP2044

2 Published Version 1.0.2

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1. Why a new interface?... 5

2. Why REST, JSON and OData? .. 6

3. Why a hypermedia API?... 7

4. Accessing an Implementation .. 8

5. Root .. 8

6. Operations.. 10

7. Versioning... 11

8. References ... 11

9. Main Objects .. 11

10. Collections.. 12

11. Common Properties.. 12

12. Common Annotations... 13

13. Actions.. 14

14. Schema .. 14

15. Sessions... 15

16. Redundancy ... 16

17. RelatedItem .. 16

18. Services.. 17

19. Registries ... 17

20. Headers.. 17

21. ETags ... 17

21.1. Handling Client Race Conditions .. 18

22. Updating Resources... 18

22.1. PUT vs PATCH.. 18

22.2. Current Configurations vs Settings ... 19

22.3. Determining Properties that can be updated. ... 19

23. Extended Error Response .. 20

24. Eventing ... 20

25. Creating User Accounts and other resources .. 20

26. Message Alignment .. 21

27. Oem.. 21

28. Idempotency... 21

28.1. Idempotent Modify: GET/PUT/PATCH .. 22

28.2. Create, Use, Delete: POST/GET/DELETE (non-idempotent) ... 22

28.3. Do Action: POST with "Action" property (non-idempotent) ... 22

29. Inheritance & Polymorphism .. 22

30. Inheritance by Copy ... 22

31. Polymorphism by Union ... 23

32. Finding Temperature Sensors for a System ... 25

33. Chassis within Chassis... 25

DSP2044 Redfish White Paper

Version 1.0.2 Published 3

What is the Redfish API?

Redfish is a management standard using a data model representation inside of a hypermedia RESTful

interface. The model is expressed in terms of standard, machine-readable Schema, with the payload of

the messages being expressed in JSON. The protocol itself leverages OData v4. Since it is a hypermedia

API, it is capable of representing a variety of implementations via a consistent interface. It has

mechanisms for managing data center resources, handling events, long lived tasks and discovery as well.

Redfish White Paper DSP2044

4 Published Version 1.0.2

1. Why a new interface?

A variety of influences have resulted in the need for a new standard management interface.

First, the market is shifting from traditional data center environments to scale-out solutions. Scale-out

solutions & hyper-scale have adopted the use of massive quantities of simple servers brought together to

perform a set of tasks in a distributed fashion (as opposed to centrally located). Reliability in these

environments is achieved through software that is either proprietary or open source. As a result, the

usage model different than traditional Enterprise environments. One analogy is that servers are treated as

“cattle”, not “pets”. This set of customers demand a standards-based interface that is consistent in

heterogeneous, multi-vendor environments.

Functionality and homogeneous interfaces are lacking in scale-out management. For instance, the IPMI

feature use is limited to a “least common denominator” set of commands (e.g. Power On/Off/Reboot,

temperature value, text console). As a result, these customers, while desiring out of band functionality,

have been forced to use a reduced set of functionality because vendor extensions are not common

across all platforms. This set of new customers are increasingly developing their own tools for tight

integration, sometimes relying on in-band software for management since they are able to develop a

common set of manageability in that environment. Increasing fragmentation of platform management

specifications as OEM extensions proliferate result in features that do not satisfy scale-out customer

needs since they are fragmented. And by referencing specific security and encryption requirements,

existing management solutions no longer meets customer security requirements.

Other standards, such as SMASH, have not met the ubiquity that was hoped for. This is due to it's

complexity. The CLP ended up being implemented in most hardware but not with a consistent output

format thus parsing resulting data was implementation dependent. WS Management was only

implemented in a limited number of out of band environments. It is a complex, layered protocol that works

best in homogeneous environments and thus never fulfilled the heterogeneity requirements. Additionally,

the complexity of the combination of understanding the protocol, generic operations, schema and the

profiles themselves ended in a solution that took years to develop, years to change and add new

functionality. It takes months for customers to understand as well as significant resource commitments

and expertise in order to become proficient in its use. It also requires a significant number of operations to

perform even the simplest tasks. Thus, while it can represent scalable systems the interface itself has an

IO pattern that is not scalable.

The hardware landscape is rapidly changing. Systems that either put multiple systems on a traditional

"blade" or aggregate a single system out of multiple blades are becoming more prevalent. These need to

be managed by the same software that is managing traditional enterprise environments. But these new

systems cannot be adequately expressed in bit-wise protocols. They cannot represent complex

architectural relationships between components in modern systems. Additionally, system aggregation

points, such as chassis or enclosure managers are incapable of using these protocols to perform their

function of expressing these complexities in the same method.

DSP2044 Redfish White Paper

Version 1.0.2 Published 5

Finally, customers are asking for a modern interface. They expect APIs to use the protocols, structures

and security models that are common in emerging cloud interfaces. These interfaces have the advantage

that customers have invested in the tools to accelerate development. Specifically, customers (without any

prompting from vendors) are asking for RESTful protocols that express data in JSON formats.

2. Why REST, JSON and OData?

REST is rapidly replacing SOAP as the protocol du jour. The entire cloud ecosystem is adopting it and

thus the web API community is as well. It is much quicker to learn that SOAP. It has the simplicity of being

a data pattern (as it is not strictly a protocol) mapped to HTTP operations directly.

• Most Popular Protocols used by Web APIs

REST semantics are easily mapped to HTTP/HTTPS. Thus, it can be easily understood by most system

administrators, has a well known security model and network configuration settings for its support are

understood. It is being taught in High Schools and Jr Colleges. As a result, the education requirements for

understanding its use a greatly reduced. Open source implementations of web servers abound and

programming language support is ubiquitous.

JSON is rapidly becoming the modern data format. It is inherently human readable, is more concise than

XML, has a plethora of modern language support and is the most rapidly growing data format for web

service APIs. It has one additional advantage for embedded manageability environments. Most BMCs

already support a web server and managing a server through a browser is common. This is usually done

via a Java script driven interface. By choosing JSON, the web browser can use the data from an Redfish

service directly in the web browser, ensuring that the data through the browser and the programmatic

interface is uniform in semantics and value.

• Most Popular Coding Languages 2014

• Data Formats used in New APIs

But following RESTful practices and formatting results as JSON alone are not enough. There are nearly

as many RESTful interfaces as there are applications, and they all differ in the resources they expose, the

headers and query options available, and how results are represented. Similarly, while JSON provides an

easy-to read representation, semantics of common properties such as id, type, links, etc. are imposed

through naming conventions that vary from service to service.

OData defines a set of common RESTful conventions which provides for interoperability between APIs.

Adopting common OData conventions for describing schema, url conventions, and naming and structure

of common properties in a JSON payload, not only encapsulate best practices for RESTful APIs which

can be used in traditional and scalable environments but further enables Redfish services to be

consumed by a growing ecosystem of generic client libraries, applications, and tools.

Redfish White Paper DSP2044

6 Published Version 1.0.2

http://fredonfire.com/wp-content/uploads/2011/10/Chart-Protocol-Usage-by-Web-APIs.png
http://static.squarespace.com/static/51361f2fe4b0f24e710af7ae/t/52dc3638e4b0d99728f927ae/1390163522743/codeeval2014.jpg
http://www.programmableweb.com/wp-content/data-formats2.jpg

3. Why a hypermedia API?

A single API style that will match the myriad of computing platforms is required. The industry cannot

support multiple interface or programming styles. A single interface that spans the market from stand

alone servers to hyper-scale as well as partionable and even virtual systems is needed by customers. A

fixed URI API will not suffice to show the various containment relationships between the various forms of

sheet metal, the servers within them and the managers associated with them. These means a 1 to many

or many to many cardinality of associations is needed.

Additionally, the API must be easy for simple systems and flexible for hyper-scale. The use of URLs to

represent associations and collections for similar resources has been proven in hypermedia APIs.

DSP2044 Redfish White Paper

Version 1.0.2 Published 7

Getting Started

One easy way to understand the Redfish API is to see an implementation in use, so these next sections

will walk through an implementation and explain the various architectural structures and concepts by

walking through an implementation.

You will need two things to start - a browser and an implementation to access with the browser.

Alternatively, you can walk through the files using a file browser or manager.

Because it is based on REST and JSON, all you need is a browser to be able to start viewing an Redfish

implementation. To make the data easier to read, it is suggested that you have a browser capable of

viewing JSON format. This can be done with a plug-in for most browsers. For a real "Redfish" experience,

you can download a RESTful plug in for your browser such as the Advanced REST Client for Chrome.

This allows you to set headers, see HTTP codes and other items that browsers normally hide. You will

also get an advantage when accessing a "real" Redfish implementation such as the emulator or a vendor

implementation.

4. Accessing an Implementation

You can view the markup either directly or through a web server. All you need is access to an

implementation. There are a few ways to do that:

• Access the public mock-up. There is a web server running JSON at redfish.dmtf.com. You can

point your browser to it and access the data. This will let you explore the mockup and the

schema.

• Copy the data to your web server. You can access the Redfish Mockup and copy all of the files

under the Mock-up directory to your local hard drive and place them under the /redfish/v1

directory that your server uses for serving up HTML pages. And example of this would be

downloading nginx, setting it up to return JSON format and then loading the mock-up files in the

html directory.

5. Root

Redfish is a hypermedia API. That means that you get to all the resources through URLs returned from

other resources. But there is one well-known URL so that every implementation has a common starting

point. That URI is "/redfish/v1" for version 1 of the Redfish interface.

Redfish White Paper DSP2044

8 Published Version 1.0.2

URLs have a schema (the HTTP:// part), a node (such as www.dmtf.org or an IP address like 127.0.0.1)

and a resource part. You put these together in the URL of your browser. So, if you are using the nginx

server on your own machine, you should be able to put "HTTP://127.0.0.1/redfish/v1/" in your browser to

access the Redfish root.

Do a GET on the root of the service from the URL you have constructed above.

DSP2044 Redfish White Paper

Version 1.0.2 Published 9

Basic Concepts

Every URL represents a resource. This could be a service, a collection, an entity or some other construct.

But in RESTful terms, these URIs point to resources and clients interact with resources. So when you see

the term resource, you can think of it as what you get back when you access a URI.

The resource format is defined by a Schema. Each resource has a specific format that is specified in the

Redfish Schema that the client can use to determine the semantics about the resource (though we try to

make things as intuitive as possible). The Redfish Schema is defined in two formats: an OData-Schema

format and a JSON Schema format. It is defined in the OData Schema format (CSDL) so that generic

OData tools and applications can interpret it. It is defined in the JSON Schema format for other

environments - like Python scripts, JavaScript code and visualization.

Structural properties of the resource are intended to be used as JavaScript variables. This should

accelerate adoption and allow JavaScript web pages and enabled apps to use the data directly. URIs are

persistent across reboots but clients are expected to start at /redfish/v1/ and do discovery of the URIs

from there.

One common mistake is to fixate on the URI. Redfish is a hypermedia API so URIs can be different

between implementations - even from the same vendor. Current state objects can be separate from

desired state objects.

6. Operations

The operations are GET, PUT, PATCH, POST, DELETE and HEAD. GET is what your browser will do if

you aren't using an advanced REST plug-in. Only the emulator and real implementations will support the

other operations.

GET retrieves data. POST is used for creating resources or to use actions (more on this later). DELETE

will delete a resource, but there are currently only a few resources that can be deleted. PATCH is used to

change one or more properties on a resource while PUT is used to replace a resource entirely (though

only a few resources can be completely replaced - more on this later too). HEAD is like a GET without the

body data returned and can be used for figuring out the URI structure by programs accessing an Redfish

implementation.

Redfish White Paper DSP2044

10 Published Version 1.0.2

7. Versioning

Redfish has two kinds of versioning - the version of the protocol and the version of the resource schema.

The version of the protocol is in the URI - that's why you should start at /redfish/v1/. It means you are

accessing version one of the protocol. Version 1 is the only one available now, but we needed to

accommodate potential future versions. This starting URI indicates the implementation complies with the

Version 1 Redfish Specification. Note that since it is based on OData v4, implementations also require the

OData protocol header (OData-Version) have a value of 4.

Each resource has a resource type definition. Resource types are defined in versioned namespaces.

Each resource instance has the type represented using the OData type annotation "@odata.type". The

value of the type annotation is the URI of the resource type, including the versioned namespace. So when

you see "@odata.type" : "#ServiceRoot.v1_0_0.ServiceRoot", you are dealing with a resource that

adheres to the ServiceRoot type definition, defined in 1.0.0 version of the ServiceRoot schema. The

corresponding schema file would be located at /schema/v1/ServiceRoot in the Redfish schema repository.

So the full URI for the type would be "/schema/v1/ServiceRoot#ServiceRoot.V1_0_0.ServiceRoot. The

schema file may contain other types used in the resource type definition (for example, structured types

and enums), which would have the same resource path but the fragment would describe a different type

definition, typically within the same namespace.

8. References

When you see the links section, it will have references to other resources in it.

JSON has no native reference type to refer to another resource. Redfish requires a fully connected

resource tree without requiring the client to consult schema (for simple operations). Therefore, this

specification leverages OData conventions for representing a reference to another internal or external

resource.

Properties representing references to other resources that follow OData conventions are identified with a

property name suffixed with "@odata.id". Properties representing URLs to other types of references, for

example an external help topic, are identified as string properties in metadata with an annotation

specifying that they represent a URL.

URIs are either absolute or relative. Absolute ones won't have the IP address but will start with /redfish/

v1/. If you have a plug in like the Chrome Advanced REST client, you can click on this to fill in the URI for

your next GET.

9. Main Objects

The "main" objects are Systems, Managers and Chassis. These are all collections (see next heading).

DSP2044 Redfish White Paper

Version 1.0.2 Published 11

We will dig into these resources in a minute, but it's good to know a bit about them.

Systems represent your typical server. Anything accessed in the data plane from the CPU is represented

as a system and these are all in the systems collection. Thus they will have CPUs, Memory and other

devices.

Managers represent your BMC, Enclosure Manager or other component that is managing the

infrastructure. Managers handle various management services but also have their own devices (like

NICs).

Chassis represents the physical aspects and containment of the infrastructure. Racks, enclosures, the

blades within them - all of these and more are Chassis. Thus there is a way to represent a Chassis in a

Chassis. It is the chassis that houses sensors, fans and the like.

Systems can have one or more managers (since some managers are redundant), and are in one chassis.

Managers are in a Chassis and can manage more than one system. And Chassis can house more than

one System and/or Managers.

This is just an overview, but looking at the ServiceRoot object, you can see these right away. You will also

notice there are services such as Sessions (more on these later too).

10. Collections

Groups of similar resources are represented as collections. Examples of these in the Mockup include

Systems, Managers, Chassis, LogEntries, Sessions, EventSubscriptions and more.

So pick either Systems, Managers or Chassis and go down into it. You will see this is a Collection.

Collection responses have a count property called "Members@odata.count" and a "Members" object that

contains a list of members, or links to members. Links to members are represented as JSON objects with

a single "@odata.id" property containing the URL of the member.

Collections may be paginated; collections with a property named "@odata.nextLink" are incomplete, and

the client can use the URL-value of the next-link property to retrieve the next portion of the collection from

the service.

11. Common Properties

As you go through the model, you keep seeing some of the same properties. You'll find "Name" & "Id" and

in every resource. "Name" and "Id" are required. You'll also see "Status" as an embedded object that has

the same definition across all usages. All of these are actually in a common part of the Schema and used

by other Schema by reference. Common properties are referenced by each resource's schema via an

odata "Reference" element within the schema so that the same definition is used everywhere. Examples

Redfish White Paper DSP2044

12 Published Version 1.0.2

of these properties are:

• "Actions", which informs clients which actions can be invoked. (more on this in the Actions

section)

• "Oem", which has vendor specific extensions to the standard definition of the resource. More on

this in the Oem section.

12. Common Annotations

There are also properties that are annotations. These start with "@" or have "@" in them. There are two

kinds of annotation properties allowed: Odata and DMTF annotations. OData annotations have "@odata."

or have "@odata." in them. Examples of these properties are

• "@odata.type", which is used to find the schema that defines this resource.

• "@odata.id", which has the URL to this resource. This is an href, but since Redish is based on

OData this property is called "@odata.id" and not "href".

• "Members@odata.count", which defines the number of resources in a collection.

DMTF annotations have "@Redfish." in them. Examples of these properies are:

• "@Redfish.Settings", which is used to indicate settings for the resource (more on this later).

One other common annotation is "@odata.context". This is really meant for generic OData v4 clients. This

is properly defined in the OData v4 specification, but basically the @odata.context is used for a few

different things:

1. It provides the location of the metadata that describes the payload.

2. It provides a root URL for resolving relative references

The structure of the @odata.context is the url to a metadata document with a fragment describing the

data (typically rooted at the top-level singleton or collection).

Technically the metadata document only has to define, or reference, any of the types it directly uses, and

different payloads could reference different metadata documents. However, since the @odata.context

provides a root URL for resolving relative references (such as @odata.id's) we have to return the

"canonical" metadata document. Further, because our "@odata.type" annotations are written as

fragments, rather than full URLs, those fragments must be defined in, or referenced by, that metadata

document. Also, because we qualify actions with the versionless namespace aliases, those aliases must

also be defined through references in the referenced metadata document.

For example, in the resource /redfish/v1/Systems/1, you will see the property "@odata.context" with the

value of "/redfish/v1/$metadata#Systems/Links/Members/$entity". This tells the generic OData v4 client to

find the Systems definition in the $metadata and look in the Links property definition and within it is a

Members property definition which has a reference to the definition for this entity.

DSP2044 Redfish White Paper

Version 1.0.2 Published 13

You will also see an annotation called "@Redfish.Copyright". Implementations will not return this property.

It is only here as a copyright statement for the static example responses used in the mockups.

13. Actions

Not everything can be done easily using REST. So we made Actions. Things like "push button" on a

System (which would reset the system or turn it off, depending on its setting) can't easily be represented

in the System because the service has no idea what the state of the button is and thus does not expose it

as a property. Another use is for long lived operations that are more easily expressed as an atomic action

as a convenience for the client - things like firmware update or graceful shutdown.

So instead of having hidden properties that you could PUT/PATCH to, or complex state machines, we

created Actions. Actions are done with POSTs to the Resource (see the spec for specifics). You can tell

what actions are supported in any resource by looking for the "Actions" property.

14. Schema

The schema contains a great deal of information that can be used by the client. It is recommended that

Clients, especially programmatic clients, examine the schema for determining semantics around the

properties. The schema contains data types, lists of enumerations, informative descriptions of properties,

normative information about property behavior and other information.

Redfish White Paper DSP2044

14 Published Version 1.0.2

More Concepts

That's the simplest form of the Redfish API. You'll notice the data is pretty readable, but you're probably

wondering about security, what a schema is, what about headers, etc.

15. Sessions

Normally, only the root can be accessed without establishing a session. But if you are using the public

mock-up or your local web server this won't be necessary as there is no security. If you have an emulator

running in secure mode, or are working with a real implementation, you will need to establish a session.

First, you will need to know a valid user name and password for your implementation.

The URI for establishing as session is also allowed to be used for POST unsecured so that you may

establish a session. This URI is /redfish/v1/Sessions in most cases and can be determined by looking at

the Sessions property under Links and finding the @odata.id property's value in the service root

(/redfish/v1/)

A session is created by an HTTP POST to the URI indicated by /redfish/v1#/Links/Sessions/@odata.id

including the following POST body:

POST /redfish/v1/SessionService/Sessions HTTP/1.1

Host: <host-path>

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

Accept: application/json

OData-Version: 4.0

{

"UserName": "<username>",

"Password": "<password>"

}

The return includes an X-Auth-Token header with a session token and Location header.

The return JSON body includes a representation of the newly created session object:

DSP2044 Redfish White Paper

Version 1.0.2 Published 15

Location: /redfish/v1/SessionService/Sessions/1

X-Auth-Token: <session-auth-token>

{

"@odata.context": "/redfish/v1/$metadata#SessionService/Sessions/$entity",

"@odata.id": "/redfish/v1/SessionService/Sessions/1",

"@odata.type": "#Session.v1_0_0.Session",

"Id": "1",

"Name": "User Session",

"Description": "User Session",

"UserName": "<username>"

}

You will use the token string in the response X-Auth-Token header in the same header for all subsequent

requests to your service. When it's time to delete the session, you can do a DELETE operation on the

URL that was returned in the @odata.id in the response (/redfish/v1/Sessions/Administrator1 in the

example above).

16. Redundancy

Go back to one of the Chassis and take a look at the fans by following the link to "Thermal" and you will

see how Redfish shows redundancy.

You will notice an array called "Redundancy". It shows the two fans in its set using the same values in the

RelatedItem properties. Redundancy has a common schema definition in Redfish and has other

properties in it besides the members to show other important attributes about redundancy. This is how the

client can figure out which items belongs to which redundancy set since the @odata.id values are

pointers to the redundancy set members.

The value of the "@odata.id" property, though, doesn't have to be to a whole resource. The value of this

property will be of two formats: a JSON Pointer or an OData reference.

• In the case of a JSON Pointer, there will be a # in it that indicates where the resource stops and

where the property pattern begins. The schema will also have a reference to the property. An

example of a JSON Pointer value might be "/redfish/v1/Chassis/1/Thermal#/Fans/0".

• In the case of an OData reference, there will not be a # in it. The schema will have a definition of

the property. An example of a JSON Pointer value might be "/redfish/v1/Chassis/1/Thermal/

Fans/0".

17. RelatedItem

If you're still in the "Thermal" resource, you can see that the Temperature array elements have a

Redfish White Paper DSP2044

16 Published Version 1.0.2

RelatedItem property with an "@odata.id" in it. This is a reference to the sub-resource that this

temperature sensor is measuring - perhaps a processor. Like Redudancy links, the value may be to a

sub-resource. Thus a client can determine what is being measured by this temperature sensor.

RelatedItem, while having a common schema definition, is situational dependent in it's usage. But it

always is used to show a relationship between two different resources or sub-resources.

And like redundancy, the value of the "@odata.id" property doesn't have to be to a whole resource.

18. Services

Let's go back to root and take a look at some common services. Tasks, Sessions, EventService and

AccountService are all common services. You can read more about them in the spec, but the service they

provide should be fairly obvious by their name. Tasks contains a list of jobs that may have been started,

usually as the result of Actions. Sessions was discussed above. AccountService is how you create users.

EventService will be discussed more below.

19. Registries

Message registries allow the Management Processor to retain a short identifier for use in events and

errors which clients can then look up in a registry to determine the actual message. Mechanisms are in

place for parameter substitution on a per-message basis.

By having the message registries as separate entities, it is easy to support internationalization since the

management processor does not need to contain the translations. Instead, the registry itself can be

translated and the client can then display any translations needed.

20. Headers

A subset of the common HTTP headers are supported by a Redfish service. A complete list of these are

in the Specification, but the two that are most relevant are the Accept header (which must be set to

'application/json') and the X-Auth-Token discussed previously. But there are many more that you will get

from an actual implementation that you will not see from a static mock-up.

21. ETags

ETags are used by browsers to optimize IO (caching). They do an If-Match and if it matches, they don't

bother dragging the data. We use them to determine if an object has changed. Thus every ETag will

change if a PUT is done or if a tool (like BIOS configuration at the console) takes place. Thus any race

condition on PUTs between Redfish and non-Redfish clients (as well as other Redfish clients) are always

DSP2044 Redfish White Paper

Version 1.0.2 Published 17

noticed.

The problem is that this is a mock-up and not a real web service so you can't see the ETags work.

21.1. Handling Client Race Conditions

It is possible for competing clients to attempt to set Setting Data overwriting each other. This condition is

handled using ETags and If- Match.

A client read/modify/write cycle consists of:

1. Get the resource, including the current ETag

2. Modify the resource properties

3. Generate a new ETag

4. PATCH the modified resource including the If-Match header containing the last known ETag.

5. If the supplied ETag no longer matches the object (something has changed since the read), the

service will return 304 Not Modified. The client should recover by repeating these steps.

6. Clients should include an ETag when updating Setting Data to enable Providers to more

efficiently detect changes and to prevent multi-client race conditions.

22. Updating Resources

The simple GET, PUT/PATCH method is a model where the client may GET the current configuration and

PUT or PATCH a new desired configuration to the same resource URI. The success of a PUT or PATCH

is determined by the HTTP status code and response body.

This is intended for interaction with intrinsic providers such as the Redfish Services' own data where the

firmware can process and respond appropriately to actions and configuration changes.

Upon PUT or PATCH, the HTTP response includes an HTTP status code and, in the case of failure, an

Extended Error Information structure as the response body.

22.1. PUT vs PATCH

So why both PUT and PATCH? When designing this specification, we ran into the semantic issue of when

to do a complete replacement of a resource instead of a partial replacement. Some resources allow either

replacement of some properties or complete replacement of the resource. We needed a way to determine

when to clear existing properties in resources like SettingData. Things started to get very convoluted and

special (=unnatural) rules were put in place to try to use a single operation.

PATCH solves this. PUT always does a complete replacement. PATCH always does a partial

Redfish White Paper DSP2044

18 Published Version 1.0.2

replacement. Deterministic behavior for the service is achieved without complex logic for either client or

server.

PATCH is gaining wide adoption in the industry. It is already supported by Open Stack and many other

APIs and in available in many off the shell web servers.

22.2. Current Configurations vs Settings

There are basically two kinds of objects in Redfish - Current Configurations and Settings. Most objects

represent the current state of any given resource. Occasionally, you'll see a property called

"@Redfish.Settings" in a resource. This annotation has a link tells you where to do PUTs and PATCHes

for configuration. It represents the future state of the resource.

Some resources can handle changes to them right away, others may require a restart/reboot of the

system or service. "@Redfish.Settings" is used to let the client know what type of resource this is and

where to make the changes.

If you see the "@Redfish.Settings" property, it has a link to a resource to make the changes that will be

picked up at the next opportunity, like a reset or reboot. If you don't see a Settings link, any PATCHes to

the object should take place right away (in the absence of a spawned task).

There is also information about when the last time the settings were applied to the resource - time, an

ETag and any messages that would have been returned if the settings had been able to be applied "live".

Examples of resources that may need Settings are devices like NICs and Storage as well as BIOS.

22.3. Determining Properties that can be updated.

Both the Schema and the metadata define which properties can be updated. Properties that are marked

"OData.Permissions/Read" or have read-only as true indicate these properties can never be updated.

Instead an "OData.Permissions/ReadWrite" or read-only = false indicates that it might be writable. The

LongDescription (normative text) may indicate which properties are writable and under what conditions.

Note that by default, metadata without a "Permissions" annotation or schema without readonly = true can

assumed to be writable.

Note that even if they are marked writable, that doesn't necessarily indicate that a property can be written

as implementations can allow the property to be read-only.

The permission on a complex type property is the default permission for all properties within the complex

type that do not have a "Permissions" annotation. For example the SubnetMask property in the

IPv4Address complex type has no "Permissions" annotation. The IPv4Addresses property in

EthernetInterface is of type IPv4Address. If IPv4Addresses has an "OData.Permission/Read" annotation,

then SubnetMask becomes read-only. If IPv4Addresses has an "OData.Permission/ReadWrite"

annotation, then SubnetMask becomes read-write. For clarity, the best practice is to define a

DSP2044 Redfish White Paper

Version 1.0.2 Published 19

"Permissions" annotation for all properties within the complex type.

Semantics on Redfish PUT/PATCH are such that attempting to update a non-writable property isn't

treated as an error. An implementation of a Redfish Service will return a 200 with Extended Error

Information indicating which properties were unable to be updated.

23. Extended Error Response

HTTP error semantics alone are not informative enough for users or applications to understand the cause

and take corrective action, leading to the concept of an Extended Error Response construct. It also

supports registries, and allows for more meaningful error semantics for clients.

For example, let's suppose a client wants to change a couple dozen properties all at once. But one of

them is invalid. If the implementation returned a "400", it would not help the client know which property

was in error and why. Or if it returns a "200" but one of the properties didn't exist, that isn't a meaningful

response.

If the response is accompanied by a JSON body with an Extended Error Response, the structure can

contain not only the reason for the code being returned but the property name and even more

information. And since ExtendedError has an array of messages, more than one message can be

returned if more than one problem was encountered.

24. Eventing

We need some kind of eventing mechanism to meet comp with SNMP, IPMI and other protocols. The

mechanism is already there in BMCs. The methodology chosen was a PUSH mechanism based on a

subscription. PUSH eventing is preferred for BMCs since it means that the event does not to be persistent

in memory once the event has been sent.

A client first needs to determine the URI it wants Events to which events will be sent. By submitting a

POST request to the EventSubscription collection, a session may be established.

Redfish supports two different categories of events: life-cycle and alert events. You can look at the

EventService for the types of eventing supported by the implementation.

More information on eventing is in the specification.

25. Creating User Accounts and other resources

Like Eventing and Sessions, resources are created via a POST operation. This is usually through a POST

to a collection. Event subscription, sessions and account services all have collections. The URI of these

Redfish White Paper DSP2044

20 Published Version 1.0.2

collection are discovered like any other resource in this hypermedia API.

The schema defines an annotation called "RequiredOnCreate" that a client can use to determine which

properties must be supplied in the POST.

26. Message Alignment

One thing the architects attempted in Redfish was to align all of the messaging formats. Event Messages,

Extended Error Response Messages, Logs Entries and Message Registries are all aligned. While vendor

specific & other formats can be preserved in an implementation, there is a path forward for message

format alignment enabling not only internationalization of messages but optimizing storage and hopefully

unifying both client and service tasks that access and present this data.

27. Oem

In the mockups, and probably implementations, you will see a construct called "Oem". This construct can

occur in 3 places: as a base property of a resource, in a "Links" section or in the "Actions" object. Redfish

defines a mechanism so that vendors can include their own extensions by adding their own object within

the "Oem" object. It must have an "@odata.type" property so that clients can find schema files for it.

Beyond that, the standard makes no claims about requirements but it is a mechanism where a multi-

vendor environment could potentially place extensions in with the same construct as the standard

resource. This prevents the need for more IOs and allows for scalability. It is hoped that vendors will bring

in features to become part of the standard over time.

28. Idempotency

RESTful operations for any RESTful service are GET, PUT/PATCH, POST, and DELETE.

Idempotency is an important concept for Redfish simplicity. Idempotent operations can be invoked

repeatedly without additional effect after the 1st time. For example: The STOP button on a DVD remote is

idempotent, push it once and the movie stops, push it more than once and the movie remains stopped.

The Pause button, on the other hand, is not idempotent. If you push it twice and it starts to play again.

Non-idempotent operations depend upon previous state.

Idempotent operators are HTTP PUT and PATCH. If a client PUTs the same data a second time, the

resource does not change. PATCH replaces properties so a replayed PATCH does not change a resource

again because it is already in the desired state from the 1st PATCH.

PUTting to a resource is the simplest possible expression of altering configuration. It means "replace

resource X with Y". Other interaction patterns are more complex than this. A PATCH is slightly more

complex since it requires differential updating of a resource. A service than can be completely

DSP2044 Redfish White Paper

Version 1.0.2 Published 21

configurable via idempotent PATCH operations is ideal.

Redfish defines three basic interaction patterns using the basic REST operations.

28.1. Idempotent Modify: GET/PUT/PATCH

PATCHing to a resource replaces the content of the resource with new values for the supplied properties.

This is used in cases where a service can simply consume desired configuration and produce resulting

state. Presumably, a client would likely GET a resource, modify property values, and then PATCH to

commit changes.

PUTing to a resource replaces the content of the resource with new values. This is used in cases with a

client can simply set a resource to desired state.

28.2. Create, Use, Delete: POST/GET/DELETE (non-idempotent)

POSTing to a resource creates a new instance of a child resource. This is typically used for data models

where items must be created and deleted. Examples include creating new user accounts, deleting user

accounts, new log entries, adding or removing licenses, etc. These items may support delete as well.

Creation is performed by POSTing content to a URI. The newly created resource is a child of that URI

and may be deleted by DELETE to the new URI.

28.3. Do Action: POST with "Action" property (non-idempotent)

POSTing to an action returned in the Actions property of a resource results in the execution of the custom

action. This pattern is not idempotent because re-posting the same content will result in additional work

being performed. An example of a custom action might be sending a test event or clearing a log.

29. Inheritance & Polymorphism

One of the items you will not see much of us Inheritance or Polymorphism.

Object inherit from a single master object called Resource. Other than that, Redfish doesn't use

inheritance. Likewise, Redfish doesn't take common properties and put them into a parent object. Thus,

there are no sub-objects to specialize from any schema. So you will never see sub-types returned in the

same collection along with a parent type.

30. Inheritance by Copy

Redfish takes common definitions and, if they aren't in Resource, the authors just cut and paste the

objects that are needed from other schema and include them in the object. This does place a burden of

Redfish White Paper DSP2044

22 Published Version 1.0.2

keeping things in sync on the authors but it also prevents the reader from digging through reference into

another reference into another reference just to find out the semantics of any given object, property or

action.

31. Polymorphism by Union

Redfish takes resources that have semantics in common and puts the definition all in the same resource.

This way, similar resources will have similar semantics. Implementers then just don't use the properties

that aren't supported. So, for example, if there are 3 different devices that are 85% similar, the 15%

difference of each device is included in the common schema definiiion.

Implementers would then use the parts of the 85% they need for their resource as well as the 15% of the

definition that applies to the device they are implementing. This does make for larger schema, but also

makes for fewer schema. When you see this approach, you will often see an extra "resource type" style

property in the schema and resource to help clients tell what flavor this device is.

DSP2044 Redfish White Paper

Version 1.0.2 Published 23

Conclusion

The Redfish API represents a new style of programming for IT that is capable of managing systems from

hyper-scale to blades to stand alone servers in a consistent manner. We believe it represents a natural

evolution that fits customer demand as well as the tools being used by those customers.

Redfish White Paper DSP2044

24 Published Version 1.0.2

Common Use Cases

Here are a few use cases that will help you understand the architecture and begin your client code.

32. Finding Temperature Sensors for a System

Application code should always start at the root: /redfish/v1/

1. In the root object is a property called "Systems".

1. Find the "@odata.id" value. This is the URI of the Systems collection.

2. In the mockup, this URI is /redfish/v1/Systems.

3. Do a GET on that URI.

2. Look at the "Links" object at the "Members" array.

1. Find the "@odata.id" of the System in question (this may require GETs on each system

and looking at properties in the system to determine the right system).

2. In the mockup, this URI is /redfish/v1/Systems/1.

3. Do a GET on that URI.

3. Look in the "Links" object for an object called "Chassis".

1. Find the "@odata.id" value. This is the chassis that this system is in.

2. In the mockup, this URI is /redfish/v1/Chassis/1.

3. Do a GET on that URI.

4. Look in the "Links" section for an object called "Thermal".

1. Find the "@odata.id" value. This is has the temperature sensors in it.

2. In the mockup, this URI is /redfish/v1/chassis/1/Thermal.

3. Do a GET on that resource.

5. Look in the "Temperature" array - this is the temperature sensors for a system.

1. Look at the "RelatedItem" to find out specifically which components each temperature

sensor monitors.

33. Chassis within Chassis

Application code should always start at the root: /redfish/v1/

1. In the root object is a property called "Chassis".

1. Find the "@odata.id" value. This is the URI of the Chassis collection.

2. In the mockup, this URI is /redfish/v1/Chassis.

DSP2044 Redfish White Paper

Version 1.0.2 Published 25

3. Do a GET on that URI.

2. Look at the "Links" object at the "Members" array.

1. Find the "@odata.id" of the Chassis in question (this may require GETs on each system

and looking at properties in the chassis to determine the right system).

2. In the mockup, this URI is /redfish/v1/Chassis/Enc1.

3. Do a GET on that URI.

3. Look in the "Links" object for an object called "Contains".

1. Find the "@odata.id" value. This is the chassis that are in this chasis.

4. Look in the "Links" section for an object called "ContainedBy".

1. Find the "@odata.id" value. This is the chassis that this chassis is in.

Redfish White Paper DSP2044

26 Published Version 1.0.2

Revision History

Version Date Description

1.0.0 2015-8 Initial release

1.0.1 2015-8 Corrected @DMTF to @Redfish

1.0.2 2017-4 Added Statement about Copyright Annotation in Mockups

DSP2044 Redfish White Paper

Version 1.0.2 Published 27

	Redfish White Paper
	What is the Redfish API?
	1. Why a new interface?
	2. Why REST, JSON and OData?
	3. Why a hypermedia API?
	Getting Started
	4. Accessing an Implementation
	5. Root
	Basic Concepts
	6. Operations
	7. Versioning
	8. References
	9. Main Objects
	10. Collections
	11. Common Properties
	12. Common Annotations
	13. Actions
	14. Schema
	More Concepts
	15. Sessions
	16. Redundancy
	17. RelatedItem
	18. Services
	19. Registries
	20. Headers
	21. ETags
	21.1. Handling Client Race Conditions

	22. Updating Resources
	22.1. PUT vs PATCH
	22.2. Current Configurations vs Settings
	22.3. Determining Properties that can be updated.

	23. Extended Error Response
	24. Eventing
	25. Creating User Accounts and other resources
	26. Message Alignment
	27. Oem
	28. Idempotency
	28.1. Idempotent Modify: GET/PUT/PATCH
	28.2. Create, Use, Delete: POST/GET/DELETE (non-idempotent)
	28.3. Do Action: POST with "Action" property (non-idempotent)

	29. Inheritance & Polymorphism
	30. Inheritance by Copy
	31. Polymorphism by Union
	Conclusion
	Common Use Cases
	32. Finding Temperature Sensors for a System
	33. Chassis within Chassis
	Revision History

