Redfish Specification

Supersedes: 1.15.0
Document Class: Normative
Document Status: Published

Document Language: en-US

Document Identifier: DSP0266
Date: 2022-04-07

Version: 1.15.1

Redfish Specification DSP0266

Copyright Notice
Copyright © 2015-2022 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

2 Published Version 1.15.1

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

DSP0266 Redfish Specification

CONTENTS

FOreWOrd. . . o e 12
ACKNOWIEAgMENtS 12
INtrOdUCHION L 14
1 S COPE . . o ot 15
2 Normative referenCesS. 16
3 Terms, definitions, symbols, and abbreviated terms 18
S Hardware terms 18
3.1.1 baseboard management controller (BMC) 18

B 2 P M. L 18

B B KVM-IP 19

B A NIC 19

B D P 19

BB PCIE .o 19
3.2Web development terms 19

3. 2.1 CORS . 19

3.2.2 CRUD 19

3.2 8 CORF .o 19

3 2.4 eVeNt . . 19

3 2.0 BXCEIPt L o 19

3 2 B HT TP . . oo 20

3 2. T HT TP S e 20

3.2.8 hypermedia APl 20

3 2.0 P 20

3 2. 10 JSON. L 20

3 2. I member . .. 20

3. 2. 12 MESSAQE . . o ottt 20
3213 0Data . . 20
3.2.14 OData service document. 20

3.2 05 0peration 21
3.216 PareNt rESOUICEottt et e e e e e e 21

B 2 A o oo =T o 21

3. 2. 18 reqUESt . .. 21

3.2 10 FESPONSE . o o ot 21
3.2.20 SUDSCHIPHION 21

3.2, 21 1asK . . 21
3.2.22task MONItOr. 21
3.2 2 TP . .o 21

3.2 24 TS . o 22
302,25 XSS . o 22

3.3 Redfish terms 22
3.3 COllECtioN . . . oo 22

Version 1.15.1 Published 3

Redfish Specification DSP0266

3.3.2 Redfish client. 22
3.3.3 Redfish protocol 22
3.3.4 Redfish schema 22

3. 3.5 Redfish ServiCe 22

B 3 B rBSOUICE . . .o 22
3.3.7resource COllECtion 23
3.3.8 rESOUICE trEE . . . o e 23
3.3.0 rES0UICE By P . . ot 23
3.3.10 SEIVICE r00t . . . oo 23
3.3.11 subordinate resoUrCe. e 23

4 Typographical conventions 24
D OV W . . o 25
B G0alS . . . 25
B 2 Design tenets. 26
B 3 LIMItationNso 26
5.4 Additional design background and rationale 27
541 REST-based interface. 27
5.4.2 Data-oriented 27
5.4.3 Separation of protocol fromdatamodel 27
5.4.4 Hypermedia APl service root e 27
5.4.5 OpenAPI V3.0 SUPPOIt. . . oo 27
5.4.6 OData CONVENTIONSt e 28
5.5 Service elements. 28
5.5.1 Synchronous and asynchronous operation support i 28
5.5. 2 Eventing mechanism. 28

B .3 ACHONS . .. 29
5.5.4 Service diSCOVEIY . . .ot 29
5.5.5 Remote access SUPPOrt i 29
BB SECUNIY 29
6 Protocol details 30
6.1 Universal Resource Ildentifiers. 30
B.2HTTP mMethods e 32
B.3 HT TP redirect e 33
6.4 Media typesS . . .t 33
6.5 ETags. . . .ot 33
6.6 ProtoCol VErSION e 34
6.7 Redfish-defined URIs and relative referencerules 35
7 SerVICE TeQUESES oo 37
7.1 Request headers 37
7.2GET (read reqUESES) 41
7.2.1 GET (read requests) OVErvIeW e 41
7.2.2 Resource collection requests 41
7.2.3 Service root reqUest 42

4 Published Version 1.15.1

DSP0266 Redfish Specification

7.2.4 OData service and metadata documentrequests. 42
7.3 QUENY Parameterso 42
7.3.1 Query parameter OVEIVIEWottt e e e e 42
7.3.2 The $expand query parameter 45
7.3.3 The $select query parameter i 47
7.3.4 The $filter query parameter. 48

T A HEAD. . .o 49
7.5 Data modification requests 50
7.5.1 Data modification requests overview e 50
7.5.2 Modification SUCCESS FESPONSES ottt ittt e e e e et e e e e 50
7.5.3 Modification error reSpONSES.t e 51
TBPATCH (Update). oo 51
7.7 PATCH on array propertieso e e e e e e 52
T8 PUT (replace) e 53
7. POST (Create) . . .ottt 53
7TAODELETE (delete)o 54
711 POST (ACHON) . . ottt 54
7.12 Operation apply time 56
713 Deep OperatioNs 59
8 S EIVICE MBS PONSES . . . ittt it e 64
8.1 Response headers 64
8.2 Link header 66
8.3 Status COOES 66
8.4 OData metadata reSpONSES. i 69
8.4.1 OData metadata resSponSes OVEIVIEW i e 69
84.20Data$metadata 69
8.4.2.1 Referencing otherschemas 70
8.4.2.2 Referencing OEM exXtensionst e 70

8.4.3 OData service document. e 71
8.5 RESOUIMCE FESPONSES ot ittt ettt e et e e e e e e e e 72
8.6 ETOr IESPONS S . .« o vttt ettt et e 72
O Data model. 74
0.1 RESOUICES . . . vttt ettt e e e e 74
0.2 RESOUICE By DS . . o et ettt 74
9.3 Resource ColleCtionso 75
9.4 OEM FESOUICES . . . o o oottt e e e e e e e e e e e e e 75
9.5 Common datatypes e 76
9.5.1 Primitive types.o 76
9.5, 2 ENUMEratioNs e 76

9 5. 3Empty string values. 77
954 GUID and UUID valueso 77
9.5.5 Date-Time Values e 77
9.5.6 Duration values 78

Version 1.15.1 Published 5

Redfish Specification DSP0266

9.5.7 Reference properties. 79
9.5.8 Non-resource reference properties 79
9.5.9 Array ProPerties. . . . o ottt 79
9.5.10 Structured properties. 80
9.5.11 Message object 80
9.5 11,1 OVEIVIEWot 80
9.5.1M.2Messageld format 81
0.6 Properties . . .o e 82
9.6.1 Properties OVeIVIEW.o 82
9.6.2 Resource identifier (@odata.id) property 83
9.6.3 Resource type (@odata.type) property.o 83
9.6.4 Resource ETag (@odata.etag) property 83
9.6.5 Resource context (@odata.context) property 84
08,8 Id . . . 84
0.6.7 NAME. . . . 84
0.6.8 DesCription 84
9.6.9 Memberld 85
9.6.10 Count (Members@odata.count) property 85
0.6. 11 MembersS . . . o 85
9.6.12 Next link (Members@odata.nextLink) property. 85
0.6. 13 LiNKS . .. 85
9.6.13.1 Reference toarelatedresource. i 86
9.6.13.2 References to multiple related resources 86
9.6.14 ACHIONS PrOPEItY . . o ottt 86
9.6.14.1 Action representation 86
9.6.14.2 ACHION FESPONSES . . . o o ittt et e 88
0.8. 15 O BM ..o 88
0.6.16 Status 88
9.7 Naming CONVENLIONS oo e e e e e 88
0. 7. 1 NamMING rUIES . . o . 88
9.7.2URI Naming rules 90
9.8 Extending standard resoUrCes. e 90
9.8.1 Extending standard reSOUrCeS OVEIVIEWottt e 90
9.8.2 OEM property formatand content. e 90
9.8.3 OEM-specified object naming 91
9.8.4 OEM resOUrCe tYPeSottt e e e 91
9.8. 5 OEM registries e 92
9.8.6 OEM URISo e 92
9.8.7 OEM property eXamplesot 93
9.8.8 OEM ACHiONSottt 93
9.9 Payload annotations 94
9.9.1 Payload annotations OVerview 94
9.9.2 Allowable values 95

6 Published Version 1.15.1

DSP0266 Redfish Specification

9.9.3 Extended information 95
9.9.3.1 Extended object information 95
9.9.3.2 Extended property information 96

9.9.4 Action info annotation 97

9.9.5 Settings and settings apply time annotations 98

9.9.6 Operation apply time and operation apply time support annotations 98

9.9.7 Maintenance window annotation. 98

9.9.8 Collection capabilities annotation 98

9.9.9 Requested count and allow over-provisioning annotations. 100

9.9.10 Zone affinity annotation. e 101

9.9.11 Supported certificates annotation 101

9.9.12 Deprecated annotation 102

9.10 Settings rESOUICE. 102
9.11 Special resource situations 104
9. 11.1 OVEIVIBW . . o oottt e 104
9.11.2 ADSENt FESOUICES. ot ettt e e e e e 104
012 RegiStries. 105
9.13 Schema annotations e 106

9.13.1 Schema annotations OVEIrVIEW 106

9.13.2 Description annotation 106

9.13.3 Long description annotation 107

9.13.4 Resource capabilities annotation 107

9.13.5 Resource URI patterns annotation 107

9.13.6 Additional properties annotation 108

9.13.7 Permissions annotation. e 108

9.13.8 Required annotation 109

9.13.9 Required on create annotation 109

9.13.10 Units of measure annotation 109

9.13.11 Expanded resource annotation 109

9.13.12 Owning entity annotation. 109

9.13.13 Deprecated annotation 110 .

914 VersSiONINg . .« o oot 110
915 Localization e 111

10 File naming and publication 112
10.1 Registry file naming 112
10.2 Profile file naming 112
10.3 Dictionary file naming 112
10.4 Localized file Nnamingo oo 113
10.5 DMTF Redfish file repository 113

11 Schema definition languages 115
11.1 OData Common Schema Definition Language i i 115
11.1.1 OData Common Schema Definition Language overview 115

11.1.2 File naming conventions for CSDL i i 115

Version 1.15.1 Published 7

Redfish Specification DSP0266

11.1.3Core CSDLfiles. 115
11.1.4 CSDL format e 116
11.1.4.1 Referencing other CSDLfiles 116
11.1.4.2 CSDL data SEIVICESttt 117
11.1.5 Elements of CSDL Namespaces ittt 117
11.1.5.1 Qualified names e 118
11.1.5.2 Entity type and complex type elements. 118
11.1.53 Action element 119
11.1.5.4 Action elementfor OEM actions 120
11.1.5.5 Action with aresponse body 120
11.1.5.6 Property element. 121
11.1.5.7 Navigation property element. 122
11158 Enumtype element. 122
11.1.5.9 Annotation element 123
T1.2JSON Schema 125
11.2.1 JSON SChema OVEIVIEWo e e e e 125
11.2.2 File naming conventions for JSON Schema 126
11.2.3 Core JSON Schemafiles. e 126
11.2.4 JSON Schema format 126
11.2.5 JSON Schema definitions body. 127
11.2.5.1 Resource definitions in JSON Schema. 127
11.2.5.2 Enumerations in JSSON Schema 128
11.2.5.3 Actions in JSON Schema 129
11.2.5.4 OEM actions in JSON Schema. e 130
11.2.5.5 Action with aresponse body 131

11.2.6 JSON Schema terms. e 132
1.3 OpEN AP . . 132
11.3.1 OpenAPI OVEIVIEW. e 132
11.3.2 File naming conventions for OpenAPlschema 133
11.3.3 Core OpenAPl schemafiles i 133
11.3.4 openapi.yaml. 133
11.3.5 OpenAPlfile format. 135
11.3.6 OpenAPl components body. 136
11.3.6.1 Resource definitions in OpenAPI 136
11.3.6.2 Enumerations in OpenAPIl. 136
11.3.6.3 Actions in OpenAPI 137
11.3.6.4 OEM actions in OpenAPI 139

11.3.7 OpenAPl terms used by Redfish 139
11.4 Schema modification rules. 140
12 Service details 141
121 EVeNting. . . oo 141
1211 EVeNnting OVEIVIEW . . . L. .ot 141
12.1.2 POST to subscription collection i 141

8 Published Version 1.15.1

DSP0266 Redfish Specification

12.1.3 0penan SSE CoNNecCtion 142
12.1.4 EventType-based eventing 143
12.1.5 Subscribingtoevents 143
12 1.6 Eventformats 145
12.1.7 OEM eXteNnSiONS 146
12.2 ASynchronous operationst 146
12.3 Resource tree stability 148
124 DISCOVEIY . . o ottt e e e 148
12.4.1 DiSCOVEIY OVEIVIEW o ot ittt e e e e e e e e e e e e e e e 148
12.4.2 UPnP compatibility 149
1243 USNformat 149
12.4.4 M-SEARCH reSPONSE oottt e e e e e 149
12.4.5 Notify, alive, and shutdown messages 150
12.5 Server-sent eVeNntS 150
1250 General 150
12.5.2 EVENt SEIVICE. . . . o 151
12.5.2.1 Eventmessage SSE stream. 153
12.5.2.2 Metricreport SSE stream 154

12.6 Update ServiCe. 155
12.6.1 OVEIVIEW . . . oo 155
12.6.2 Software update types 155
12.6.2.1 Simple updates. 155
12.6.2.2 Multipart HTTP push updates. 155

13 Security details. 158
13.1 Transport Layer Security (TLS) protocol e i 158
13.1.1 Transport Layer Security (TLS) protocol overview 158
13.1.2 Cipher sUites 158
13.1.3 Certificates 159
13.2 Sensitive data 159
13.3 Authentication 159
13.3.1 Authentication overview 159
13.3.2 Authentication requirements 160
13.3.2.1 Resource and operation authentication requirements 160
13.3.2.2 HTTP header authentication requirements. 160
13.3.2.3 Authentication failure requirements 160

13.3.3 HTTP Basic authentication e 161
13.3.4 Redfish session login authentication. 161
13.3.4.1 Redfish 10gin SESSIONS 161
13.3.4.2 Session l0gino 162
13.3.4.3 Session lifetime. 163
13.3.4.4 Session termination orlogout. 163

13.4 AUthOriZatioNn 163
13.4.1 Authorization OVerview 163

Version 1.15.1 Published 9

Redfish Specification DSP0266

13.4.2 Privilege model 164
13.4.2.1 ROIES. . . 164

13.4.2.2 Restricted roles and restricted privileges 165

13423 OEM privileges 166

13.4.3 Redfish service operation-to-privilege mapping 166
13.4.3.1 Why specify operation-to-privilege mapping?. 166

13.4.3.2 Representing operation-to-privilege mappings. 167

13.4.3.3 Operation map syntax. 167

13.4.3.4 Mapping overrides SYyNtax.ttt 168

13.4.3.5 Property override example 169

13.4.3.6 Subordinate override 169

13.4.3.7 Resource URI override e 170

13.4.3.8 Privilege AND and OR Syntax.t e e 171

13.4.4 Delegated authorization with OAuth 2.0 172
13.4.4.1 OAUth 2.0 OVEIVIEW o 172

13.4.4.2 OAuth 2.0 data model requirements. i 172

13.4.4.3 OAuth 2.0 accesstokens 173

13.4.4.4 Redfish OAUth2.0 SCOPEe USAgEeottt 175

T13.5 ACCOUNT SEIVICE . . . o\t ottt e e e e 175
13.5.1 ACCOUNt SEIVICE OVEIVIEW o oo e e e e e e 175
13.5.2 Password management 175
13.5.3 Password change required handling. 176

13.6 ASynNchronous tasks 176
13.7 Event subsCriptionso 176

14 Redfish Host Interface 177
15 Redfish composability 178
15.1 ComposItioN reqUESES oo 179
15.1.1 Composition requests OVEIVIEW i e e 179
15.1.2 Specific composition 179

15.1.3 Constrained COomposSItioNn. e 180
15.1.4 EXpandable reSOUICES i e e 181

15.2 Updating @ composed re€SOUICE. oo e e e 181

16 AQgregation 182
16.1 Classes of aggregators 182
16.1.1 Implicit and complex aggregators e 182
16.1.2 USE CaSES . . o vttt ittt e 183

16.2 AgQregation SErVICE. 183
16.2.1 Aggregation SErviCe OVEIVIEWo ittt e e e 183

16.2.2 Aggregator requiremMents 183

16.2.3 Aggregates oo 184

16.2.4 Aggregation sources and connection methods. 184

17 ANNEX A (informative) Change l0g. 186
18 Bibliography . . . o 202

10 Published Version 1.15.1

DSP0266 Redfish Specification

Version 1.15.1 Published 1

Redfish Specification DSP0266

Foreword

The Redfish Forum of the DMTF develops the Redfish standard.

DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and
interoperability. For information about the DMTF, see DMTF.

This version supersedes version 1.15.0. For a list of the changes, see ANNEX A (informative) Change log.

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to the Redfish standard, including this
document and Redfish schemas, interoperability profiles, and message registries:

Rafig Ahamed - Hewlett Packard Enterprise
* Richelle Ahlvers - Broadcom Inc.
+ Jeff Autor - Hewlett Packard Enterprise
David Black - Dell Inc.
+ Jeff Bobzin - Insyde Software Corp.
» Patrick Boyd - Dell Inc.
David Brockhaus - Vertiv
* Richard Brunner - VMware Inc.
Sean Byland - Cray Inc.
+ Lee Calcote - Seagate Technology
+ Keith Campbell - Lenovo
P Chandrasekhar - Dell Inc.
+ Barbara Craig - Hewlett Packard Enterprise
» Chris Davenport - Hewlett Packard Enterprise
Gamma Dean - Vertiv
+ Michael Du - Huawei Technologies Co., Ltd.
Daniel Dufresne - Dell Inc.
+ Samer El-Haj-Mahmoud - Arm Limited, Lenovo, Hewlett Packard Enterprise
+ George Ericson - Dell Inc.
Wassim Fayed - Microsoft Corporation
» Kevin Ferguson - Vertiv
» Mike Garrett - Hewlett Packard Enterprise
Steve Geffin - Vertiv
» Joe Handzik - Hewlett Packard Enterprise

12 Published Version 1.15.1

https://www.dmtf.org/

DSP0266 Redfish Specification

+ Jon Hass - Dell Inc.
Jeff Hilland - Hewlett Packard Enterprise
+ Chris Hoffman - Vertiv
» Cactus Jiang - Vertiv
+ Barry Kittner - Intel Corporation
+ Steven Krig - Intel Corporation
Jennifer Lee - Intel Corporation
+ John Leung - Intel Corporation
* Magnus Lundmark - Ericsson AB
Steve Lyle - Hewlett Packard Enterprise
+ Gunnar Mills - IBM
» Jagan Molleti - Dell Inc.
» Milena Natanov - Microsoft Corporation
+ Scott Phuong - Cisco Systems, Inc.
Michael Pizzo - Microsoft Corporation
+ Chris Poblete - Dell Inc.
* Michael Raineri - Dell Inc.
Joseph Reynolds - IBM
«+ Irina Salvan - Microsoft Corporation
+ Bill Scherer - Hewlett Packard Enterprise
* Hemal Shah - Broadcom Inc.
+ Jim Shelton - Vertiv
Tom Slaight - Intel Corporation
+ Josiah Smith - Eaton
+ Donnie Sturgeon - Vertiv
Pawel Szymanski - Intel Corporation
» Paul Vancil - Dell Inc.
» Joseph White - Dell Inc.
+ Linda Wu - NVIDIA Corporation, Super Micro Computer, Inc.

Version 1.15.1 Published 13

Redfish Specification DSP0266

Introduction

Redfish is a standard that uses RESTful interface semantics to access a schema based data model to conduct
management operations. It is suitable for a wide range of devices, from stand-alone servers, to composable
infrastructures, and to large-scale cloud environments.

The initial Redfish scope targeted servers. The DMTF and its alliance partners expanded that scope to cover most
data center IT equipment and other solutions, and both in- and out-of-band access methods.

Additionally, the DMTF and other organizations that use Redfish as part of their industry standard or solution have
added educational material.

This document defines the RESTful interface protocol and the various concepts and services necessary to implement
a Redfish interface. The definition of the schema based data model and standard messages for the Redfish interface
are covered separately in the following documents:

- DMTF DSP8010, Redfish Schema Bundle, https://www.dmtf.org/dsp/DSP8010 contains the individual schema
definition files in multiple schema description languages.

+ DMTF DSP0268, Redfish Schema Supplement, https://www.dmtf.org/dsp/DSP0268 contains the normative
descriptions and example payloads for all standard Redfish schema in a single reference guide.

- DMTF DSP8011, Redfish Standard Registries Bundle, https://www.dmtf.org/dsp/DSP8011 contains the
message registries used for error reporting and event messages.

14 Published Version 1.15.1

https://www.dmtf.org/dsp/DSP8010
https://www.dmtf.org/dsp/DSP0268
https://www.dmtf.org/dsp/DSP8011

DSP0266 Redfish Specification

1 Scope

This specification defines the required protocols, data model, behaviors, and other architectural components for an
interoperable, multivendor, remote, and out-of-band capable interface. This interface meets the cloud-based and
web-based IT professionals' expectations for scalable platform management. While large and hyperscale
environments are the primary focus, clients can use the specification for individual system management.

The specification defines the required elements for all Redfish implementations, and the optional elements that
system vendors and manufacturers can choose. This specification also defines at which points an implementation
can provide OEM-specific extensions.

The specification sets normative requirements for Redfish services and associated materials, such as Redfish
schema files. In general, the specification does not set requirements for Redfish clients but indicates how a client can
successfully and effectively access and use a Redfish service.

The specification does not require that implementations of the Redfish interfaces and functions require particular
hardware or firmware.

Version 1.15.1 Published 15

Redfish Specification DSP0266

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

+ DMTF DSP0270, Redfish Host Interface Specification, hitps://www.dmtf.org/sites/default/files/standards/
documents/DSP0270_1.0.0.pdf

» Redfish Schema: RedfishExtensions v1.0.0, https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml

« Transport Layer Security (TLS) Parameters, https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml

+ JSON Schema: A Media Type for Describing JSON Documents draft-handrews-json-schema-01,
https://tools.ietf.org/html/draft-handrews-json-schema-01

+ JSON Schema Validation: A Vocabulary for Structural Validation of JSON draft-handrews-json-schema-
validation-01, https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

+ IETF RFC1738, T. Berners-Lee et al, Uniform Resource Locators (URL), https://tools.ietf.org/html/rfc1738

+ |ETF RFC3986, T. Berners-Lee et al, Uniform Resource Identifier (URI): Generic Syntax, https://tools.ietf.org/
html/rfc3986

« |ETF RFC5280, D. Cooper et al, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,

+ |IETF RFC6585, M. Nottingham et al, Additional HTTP Status Codes, https://tools.ietf.org/html/rfc6585
» |ETF RFC6749, D. Hardt, Ed., The OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/rfc6749
« |ETF RFC6901, P. Bryan, Ed. et al, JavaScript Object Notation (JSON) Pointer, https://tools.ietf.org/html/rfc6901

+ |ETF RFC7230, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing,
https://tools.ietf.org/html/rfc7230

« IETF RFC7231, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,
https://tools.ietf.org/html/rfc7231

« |ETF RFC7232, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests,
https://tools.ietf.org/html/rfc7232

« |ETF RFC7234, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Caching, https://tools.ietf.org/html/
rfc7234

« IETF RFC7519, M. Jones et al, JSSON Web Token (JWT), https://tools.ietf.org/html/rfc7519

« IETF RFC7525, Y. Sheffer et al, Recommendations for Secure Use of Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS), https://tools.ietf.org/html/rfc7525

« |ETF RFC7578, L. Masinter et al, Returning Values from Forms: multipart/form-data, https://tools.ietf.org/html/
rfc7578

- IETF RFC7617, J. Reschke et al, The 'Basic' HTTP Authentication Scheme, hitps://tools.ietf.org/html/rfc7617
- |ETF RFC8259, T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format,

16 Published Version 1.15.1

https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7617

DSP0266 Redfish Specification

https://tools.ietf.org/html/rfc7617
+ |ETF RFC8288, M. Nottingham, Web Linking, https://tools.ietf.org/html/rfc8288

+ 1S0O 639-1:2002, Codes for the representation of names of languages - Part 1: Alpha-2 code,
https://www.iso.org/standard/22109.html

+ 24 February 2014, OData Version 4.0 Part 1: Protocol, https://docs.oasis-open.org/odata/odata/v4.0/os/
part1-protocol/odata-v4.0-os-part1-protocol.html

+ 24 February 2014, OData Version 4.0 Part 3: Common Schema Definition Language (CSDL), https://docs.oasis-
open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

» 10 March 2016, OData Version 4.0 Plus Errata 03 OASIS Standard incorporating Draft 01 of Errata 03,
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/
Org.OData.Measures.V1.xml

+ 20 November 2014, SNIA TLS Specification for Storage Systems, https://www.snia.org/tech_activities/
standards/curr_standardsitls

« The OpenAPI Specification, hitps://swagger.io/specification/
» The Unified Code for Units of Measure, https://ucum.org/ucum.html
+ 9 September 2021, Fetch Living Standard, https://fetch.spec.whatwg.org/

« 17 September 2021, 9.2 Server-sent events in the HTML Living Standard, https://html.spec.whatwg.org/
multipage/server-sent-events.html

Version 1.15.1 Published 17

https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288
https://www.iso.org/standard/22109.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://swagger.io/specification/
https://ucum.org/ucum.html
https://fetch.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html

Redfish Specification DSP0266

3 Terms, definitions, symbols, and abbreviated terms

Some terms and phrases in this document have specific meanings beyond their typical English meanings. This
clause defines those terms and phrases.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",
"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional
cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7
specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal
English meaning.

The terms "clause", "subclause", "paragraph”, and "annex" in this document are to be interpreted as described in
ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,
Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative
content. Notes and examples are always informative elements.

The term "deprecated" in this document is to be interpreted as material that is not recommended for use in new
development efforts. Existing and new implementations may use this material, but they should move to the favored
approach. Deprecated material may be implemented in order to achieve backwards compatibility. Deprecated
material should contain references to the last published version that included the deprecated material as normative
material and to a description of the favored approach. Deprecated material may be removed from the next major
version of the specification.

This document defines these additional terms:

3.1 Hardware terms

3.1.1 baseboard management controller (BMC)
embedded device or service

Note 1 to entry: Typically an independent microprocessor or system-on-chip with associated firmware in a computer
system that completes out-of-band systems monitoring and management-related tasks.

3.1.21PMI

Intelligent Platform Management Interface

18 Published Version 1.15.1

DSP0266

3.1.3 KVM-IP

keyboard, video, mouse redirection over IP

3.1.4NIC

network interface controller

3.1.5 PCI

Peripheral Component Interconnect

3.1.6 PCle

Peripheral Component Interconnect Express

3.2 Web development terms

3.2.1 CORS

cross-origin resource sharing

3.2.2 CRUD

basic Create, Read, Update, and Delete operations that any interface can support

3.2.3 CSRF

cross-site request forgery

3.2.4 event

data structure that corresponds to one or more alerts

3.2.5 excerpt

subset of data that is copied from one resource and presented in another resource

Redfish Specification

Note 1 to entry: An excerpt provides data in convenient locations without duplication of entire resources.

Version 1.15.1 Published

19

Redfish Specification

3.2.6 HTTP

Hypertext Transfer Protocol

3.2.7 HTTPS

Hypertext Transfer Protocol Secure

Note 1 to entry: TLS secures HTTP.

3.2.8 hypermedia API

API that enables you to navigate through URIs that a service returns

3.291P

Internet Protocol

3.2.10 JSON

JavaScript Object Notation

3.2.11 member

single resource instance in a resource collection

3.2.12 message

complete HTTP-formatted or HTTPS-formatted request or response

Note 1 to entry: In the REST-based Redfish protocol, every request results in a response.

3.2.13 OData

Open Data Protocol (OData), as defined in OData Version 4.0 Part 1: Protocol

3.2.14 OData service document

resource that provides information about the service root for generic OData clients

DSP0266

20 Published

Version 1.15.1

DSP0266 Redfish Specification

3.2.15 operation

HTTP POST, GET, PUT, PATCH, HEAD, and DELETE request methods that map to generic CRUD operations

3.2.16 parent resource

parent to another resource if the initial segment of the resource URI is the same as the URI of the other resource, but
is at least one level higher

Note 1 to entry: For example, /redfish/vi/Chassis/A88 is a parent resource of /redfish/vi/Chassis/A88/Assembly .

3.2.17 property
name-value pair in a Redfish-defined request or response

Note 1 to entry: A property can be any valid JSON data type.

3.2.18 request

message from a client to a service

3.2.19 response

message from a service to a client in response to a request message

3.2.20 subscription

registration of a destination to receive events

3.2.21 task

representation of a long-running operation

3.2.22 task monitor

opaque service-generated URI that the client who initiates the request can use to monitor an asynchronous operation

3.2.23 TCP

Transmission Control Protocol

Version 1.15.1 Published 21

Redfish Specification

3.2.24 TLS

Transport Layer Security

3.2.25 XSS

cross-site scripting

3.3 Redfish terms

3.3.1 collection

see resource collection

3.3.2 Redfish client

DSP0266

communicates with a Redfish service and accesses one or more of the service's resources or functions

3.3.3 Redfish protocol

discovers, connects to, and inter-communicates with a Redfish service

3.3.4 Redfish schema

a set of human and machine-readable documents that define Redfish resources using one or more of the supported

schema definition languages

3.3.5 Redfish service

implementation of the protocols, resources, and functions that deliver the interface that this specification defines and

its associated behaviors for one or more managed systems

Note 1 to entry: Also known as the service.

3.3.6 resource

URI-addressable Redfish data structure

22 Published

Version 1.15.1

DSP0266 Redfish Specification

3.3.7 resource collection

set of similar resources where the number of instances can shrink or grow

3.3.8 resource tree
tree structure of resources accessible through a well-known starting URI

Note 1 to entry: A client can discover the available resources on a Redfish service by following the resource
hyperlinks from the base of the tree.

3.3.9 resource type

set of definitions for properties and actions contained within a resource and documented in the Redfish schema files

3.3.10 service root

starting-point resource for locating and accessing the other resources and associated metadata that make up an
instance of a Redfish service

3.3.11 subordinate resource

is subordinate to another resource if the initial segment of the resource URI is the same as the URI of the other
resource, but is at least one level deeper

Note 1 to entry: For example, /redfish/v1/Chassis/A88/Assembly is a subordinate resource of the chassis resource
named A88 .

Version 1.15.1 Published 23

Redfish Specification DSP0266

4 Typographical conventions

The following typographical convention indicates deprecated material:

DEPRECATED
Deprecated material appears here.

END DEPRECATED

In places where this typographical convention cannot be used, such as tables or figures, the "DEPRECATED" label
is used alone.

24 Published Version 1.15.1

DSP0266 Redfish Specification

5 Overview

Redfish is a management standard that uses a data model representation with a RESTful interface.
Being RESTful, Redfish is easier to use and implement.

Being model-oriented, it can express the relationships between components and the semantics of the Redfish
services and components within them. The model is also easy to extend.

By requiring JSON representation, Redfish enables easy integration with programming environments. It is also easy
to interpret by humans.

An interoperable Redfish schema defines this model, which is freely available and published in OpenAP| YAML,
OData CSDL, and JSON Schema formats.

5.1 Goals

As an architecture, data model, and set of protocols that enable a client to access Redfish services, Redfish has
these goals.

Table 1 describes these goals:

Table 1 — Redfish goals

Goal Purpose

Scalable Can scale on stand-alone machines or racks of equipment.

Flexible Can implement through existing hardware or entirely as a software service.

Extensible Can easily add new and vendor-specific capabilities to the data model.

Backward-compatible Can add capabilities while preserving investments in earlier implementations.

Interoperable Provides consistent functionality across multiple vendor implementations.

Standards-based Built on ubiquitous and secure protocols. Leverages other standards where applicable.
Simple Easy-to-use without the need for highly specialized programming skills or systems knowledge.

Designed to reduce complexity and implementation costs. Minimizes the required footprint for

Lightweight))
implementations.

Version 1.15.1 Published 25

Redfish Specification DSP0266

5.2 Design tenets

To deliver these goals, Redfish:

+ Provides a RESTiul interface by using a JSON payload and a data model.

» Separates the protocol from the data model, which enables the independent revision and use of each.

» Specifies versioning rules for protocols and schema.

+ Leverages strength of ubiquitous standards where it meets architectural requirements, such as JSON, HTTP,
OData, OpenAPI, and the RFCs that this document references.

+ Organizes the data model so that it provides clearly demarcated and value-add features in the same payload as
standardized items.

+ Makes data in payloads as obvious in context as possible.

» Maintains implementation flexibility. Does not tie the interface to any particular underlying implementation or
architecture.

» Focuses on widely used capabilities. To avoid complexity, does not add functions that only a small percentage of
users value.

5.3 Limitations

Redfish minimizes the need for clients to complete upgrades by using strict versioning and forward-compatibility
rules, and separation of the protocols from the data model. However, Redfish does not guarantee that clients never
need to update their software. For example, clients might need to upgrade to manage new system or component
types, or update the data model.

Interoperable does not mean identical. Many elements of Redfish are optional. Clients should be prepared to
discover the optional elements by using the built-in discovery methods.

The resource tree reflects the topology of the system and its devices. Consequently, different hardware or device
types result in different resource trees, even for identical systems from the same manufacturer. References between
resources may result in a graph instead of a tree. Clients that traverse the resource tree should provide logic to avoid
infinite loops.

Additionally, not all Redfish resources use simple REST read-and-write semantics. Different use cases may follow
other types of client logic. For example, clients cannot simply read user credentials or certificates from one service
and write them to another service.

Finally, the hyperlink values between resources and other elements can vary across implementations. Clients should
not assume that they can reuse hyperlinks across different Redfish service instances.

26 Published Version 1.15.1

DSP0266 Redfish Specification

5.4 Additional design background and rationale

5.4.1 REST-based interface
Redfish exposes many service applications as RESTful interfaces. This document defines a RESTful interface.
Redfish defines a RESTful interface because it:

+ Enables a lightweight implementation, using fewer layers than previous standards.
Is a prevalent access method in the industry.

+ Is easy to learn, document, and implement in modern programming languages.
Has a number of development environments and a healthy tooling ecosystem.
Fits with the design goal of simplicity.

+ Equally applies to software application space as it does to embedded environments, which enables convergence
and sharing of code within the management ecosystem.

+ Adapts well to any data modeling language.

Has industry-provided security and discovery mechanisms.

5.4.2 Data-oriented

The Redfish data model is developed by focusing on the contents of the payload. By concentrating on the contents of
the payload first, Redfish payloads are easily mapped to schema definition languages and encoding types. The data
model is defined in various schema languages, including OpenAPI YAML, OData CSDL, and JSON Schema.

5.4.3 Separation of protocol from data model

Redfish separates the protocol operations from the data model and versions the protocol independently from the data
model. This enables clients to extend and change the data model as needed without requiring the protocol version to
change.

5.4.4 Hypermedia API service root

Redfish has a single service root URI and clients can discover all resources through referenced URIs. The
hypermedia API enables the discovery of resources through hyperlinks.

5.4.5 OpenAPI v3.0 support

The OpenAPI v3.0 provides a rich ecosystem of tools for using RESTful interfaces that meet the design requirements
of that specification. Starting with Redfish Specification v1.6.0, the Redfish schemas support the OpenAPI YAML file
format and URI patterns that conform to the OpenAPI Specification were defined. Conforming Redfish services that

Version 1.15.1 Published 27

Redfish Specification DSP0266

support the Redfish protocol version v1.6.0 or later implement those URI patterns to enable use of the OpenAPI
ecosystem.

For details, see OpenAPI Specification v3.0.

5.4.6 OData conventions

With the popularity of RESTful APIs, there are nearly as many RESTful interfaces as there are applications. While
following REST patterns helps promote good practices, due to design differences between the many RESTful APIs
there few common conventions between them.

To provide for interoperability between APIs, OData defines a set of common RESTful conventions and annotations.
Redfish follows OData conventions for describing schema, URL conventions, and definitions for typical properties in
a JSON payload.

5.5 Service elements

5.5.1 Synchronous and asynchronous operation support

Some operations can take more time than a client typically wants to wait. For this reason, some operations can be
asynchronous at the discretion of the service. The request portion of an asynchronous operation is no different from
the request portion of a synchronous operation.

To determine whether an operation was completed synchronously or asynchronously, clients can review the HTTP
status codes. For more information, see the Asynchronous operations clause.

5.5.2 Eventing mechanism

Redfish enables clients to receive messages outside the normal request and response paradigm. The service uses
these messages, or events, to asynchronously notify the client of a state change or error condition, usually of a time
critical nature.

This specification defines two styles of eventing:
* Push-style eventing.

When the service detects the need to send an event, it calls HTTP PposT to push the event message to the
client. Clients can enable reception of events by creating a subscription entry in the event service, or an
administrator can create subscriptions as part of the Redfish service configuration.

+ Server-sent events (SSE)-style eventing.

28 Published Version 1.15.1

DSP0266 Redfish Specification

The client opens an SSE connection to the service through a GET on the serversSentEventuri -specified URI in
the event service.

For information, see the Eventing clause.

5.5.3 Actions

Actions are Redfish operations that do not easily map to RESTful interface semantics. These types of operations
may not directly affect properties in the Redfish resources. The Redfish schema defines certain standard actions for
common Redfish resources. For these standard actions, the Redfish schema contains the normative language on the
behavior of the action.

5.5.4 Service discovery

While the service itself is at a well-known URI, clients need to discover the network address of the service. Like
UPnP, Redfish uses SSDP for discovery. A wide variety of devices, such as printers and client operating systems,
support SSDP. It is simple, lightweight, IPv6 capable, and suitable for implementation in embedded environments.

For more information, see the Discovery clause.

5.5.5 Remote access support

Remote management functionality typically includes access mechanisms for redirecting operator interfaces such as
serial console, keyboard video and mouse (KVM-IP), command shell, or command-line interface, and virtual media.
While these mechanisms are critical functionality, they cannot be reasonably implemented as a RESTful interface.

Therefore, this standard does not define the protocols or access mechanisms for those services but encourages

implementations that leverage existing standards. However, the Redfish schema includes resources and properties
that enable client discovery of these capabilities and access mechanisms to enable interoperability.

5.6 Security

The challenge of remote interface security is to protect both the interface and exchanged data. To accomplish this,
Redfish provides authentication and encryption. As part of this security, Redfish defines and requires minimum levels
of encryption.

For more information, see the Security details clause.

Version 1.15.1 Published 29

Redfish Specification DSP0266

6 Protocol details

In this document, the Redfish protocol refers to the RESTful mapping to HTTP, TCP/IP, and other protocol, transport,
and messaging layer aspects. HTTP is the application protocol that transports the messages and TCP/IP is the
transport protocol. The RESTful interface is a mapping to the message protocol.

The Redfish protocol is designed around a web service-based interface model, which provides network and
interaction efficiency for both user interface (Ul) and automation usage. Specifically, the protocol can leverage
existing tool chains.

Table 2 describes the items that the Redfish protocol uses:

Table 2 — Redfish protocol

Item Description

HTTP methods Maps to common CRUD operations.

Actions Expands operations beyond CRUD-type operations.
Media types Negotiates the type of data sent in the message body.
HTTP status codes Indicates the success or failure of the server's request.
Error responses Returns more information than HTTP status codes.
TLS Secures messages. See Security details.
Asynchronous semantics Manages long-running operations.

A Redfish interface shall be exposed through a web service endpoint implemented by using HTTP version 1.1. See
RFC7230, RFC7231, and RFC7232.

The subsequent clauses describe how the Redfish interface uses and adds constraints to HTTP to ensure
interoperability of Redfish implementations.

6.1 Universal Resource ldentifiers

A Universal Resource Identifier (URI) identifies a resource, including the service root and all Redfish resources.

» A URI shall identify each unique instance of a resource.
* URIs shall not include any RFC1738-defined unsafe characters.
o For example,the {, }, , |, ~, ~, [, 1, ~,and \ characters are unsafe because gateways and
other transport agents can sometimes modify these characters.

30 Published Version 1.15.1

DSP0266 Redfish Specification

o Do not use the # character for anything other than the start of a fragment.

» URIs shall not include any percent-encoding of characters. This restriction does not apply to the query
parameters portion of the URI.

A GeT operation on a URI returns a representation of the resource with properties and hyperlinks to associated
resources. The service root URI is well known and is based on the protocol version.

To discover the URIs to additional resources, extract the associated resource hyperlinks from earlier responses. The
hypermedia API enables the discovery of resources through hyperlinks.

Redfish considers the RFC3986-defined scheme, authority, service root, and version, and unique resource path
component parts of the URI.

For example, this URI:

https://mgmt.vendor.com/redfish/v1/Systems/1

Contains these component parts:

* https: isthe scheme.
* mgmt.vendor.com is the authority to which to delegate the URI.
* redfish/vl is the service root and version.

* Systems/1 is the unique resource path.
In a URI:

» The scheme and authority component parts are not part of the unique resource path because redirection
capabilities and local operations may cause the connection portion to vary.

» The service root and resource path component parts uniquely identify the resource in a Redfish service.
In an implementation:

» The resource path component part shall be unique.
» Arelative reference in the body and HTTP headers payload can identify a resource in that same implementation.

+ An absolute URI in the body and HTTP headers payload can identify a resource in a different implementation.
For the absolute URI definition, see RFC3986.

For example, a PosT operation may return the /redfish/vi/Systems/2 URIlinthe Location header of the response,
which points to the PosT -created resource.

Version 1.15.1 Published 31

Redfish Specification DSP0266

Assuming that the client connects through the mgmt.vendor.com appliance, the client accesses the resource through
the https://mgmt.vendor.com/redfish/v1l/Systems/2 absolute URI.

URIs that conform to RFC3986 may also contain the query, ?query , and frag, #frag , components. For information
about queries, see Query parameters. When a URI includes a fragment (frag) to submit an operation, the server
ignores the fragment.

If a property in a response references another property within a resource, use the RFC6901-defined URI fragment
identifier representation format. If the property is a reference property in the schema, the fragment shall reference a
valid resource identifier. For example, the following fragment identifies a property at index 0 of the Fans array in the
/redfish/v1l/Chassis/MultiBladeEncl/Thermal resource:

"@odata.id": "/redfish/v1/Chassis/MultiBladeEncl/Thermal#/Fans/0"

For requirements on constructing Redfish URIs, see the resource URI patterns annotation clause.

6.2 HTTP methods

Table 3 describes the mapping of HTTP methods to the Redfish-supported operations. If the Required column
contains Yes, a Redfish interface shall support the HTTP method. If the Required column contains No, a Redfish
interface may support the HTTP method.

Table 3 — Mapping of HTTP methods to Redfish-supported operations

HTTP method Interface semantic Required

Create resource

POST Resource action Yes
Eventing

GET Retrieve resource Yes

PUT Replace resource No

PATCH Update resource Yes

DELETE Delete resource Yes

HEAD Retrieve resource header No

OPTIONS Retrieve header No
Cross-origin resource sharing (CORS) pre-flight

32 Published Version 1.15.1

DSP0266 Redfish Specification

For HTTP methods that the Redfish service does not support or that Table 3 omits, the Redfish service shall return
the HTTP 405 Method Not Allowed status code orthe HTTP 501 Not Implemented status code.

6.3 HTTP redirect

HTTP redirect enables a service to redirect a request to another URL. Among other things, HTTP redirect enables
Redfish resources to alias areas of the data model.

All Redfish clients shall correctly handle HTTP redirect.

The service for the redirected resource shall enforce the authentication and authorization requirements for the
redirected resource.

6.4 Media types

Some resources may be available in more than one type of representation. The media type indicates the
representation type.

In HTTP messages, the media type is specified in the content-Type header. To tell a service to return the response
through certain media types, the client sets the HTTP Accept header to a list of the media types.

+ All resources shall be available through the JSON application/json media type.

» Redfish services shall make every resource available in a JSON-based representation as a JSON object, as
specified in RFC8259. Receivers shall not reject a JSON-encoded message, and shall offer at least one JSON-
based response representation. An implementation may offer additional non-JSON media type representations.

To request compression in the response body, clients specify an Accept-Encoding request header.

6.5 ETags

To reduce unnecessary RESTful accesses to resources, the Redfish service should support the association of a
separate entity tag (ETag) with each resource.

» Implementations should support the return of ETag properties for each resource.
+ Implementations should support the return of ETag headers for each single-resource response.
» Implementations shall support the return of ETag headers for GET requests of ManagerAccount resources.

Because the service knows whether the new version of the object is substantially different, the service generates and
provides the ETag as part of the resource payload.

The ETag mechanism supports both strong and weak validation. If a resource supports an ETag, it shall use the
RFC7232-defined ETag.

Version 1.15.1 Published 33

Redfish Specification DSP0266

This specification does not mandate a particular algorithm for ETag creation, but ETags should be highly collision-
free.

An ETag can be:

* Ahash
* A generation ID
+ Atime stamp

+ Some other value that changes when the underlying object changes

If a client performs a puT operation or PATCH operation to update a resource, it should include an ETag from a
previous GeT inthe HTTP If-Match or If-None-Match header. Both strong and weak ETags are allowed in these
headers. If a service supports the return of the ETag header on a resource, it may respond with the HTTP 428
Precondition Required status code if the If-Match or If-None-Match header is missing from the puT or PATCH
request for the same resource, as specified in RFC6585.

In addition to the return of the ETag property on each resource, a Redfish service should return the ETag header on:

» Aclient puT, POST,Or PATCH operation

* A GET operation for an individual resource

The format of the ETag header is:

ETag: <string>

For responses to $expand requests:

+ The @odata.etag property of each resource in the response shall contain the ETag of the resource as if it were
not expanded.

+ The ETag header should contain the ETag of the entire response body.

6.6 Protocol version

The protocol version is separate from the resources' version or the Redfish schema version that the resources
support.

Each Redfish protocol version is strongly typed by using the URI of the Redfish service in combination with the
resource obtained at that URI, called the ServiceRoot resource.

The root URI for this version of the Redfish protocol shall be /redfish/vi/ .

The URI defines the major version of the protocol.

34 Published Version 1.15.1

DSP0266 Redfish Specification

The Redfishversion property of the ServiceRoot resource defines the protocol version, which includes the major
version, minor version, and errata version of the protocol, as defined in the Redfish schema for that resource.

The protocol version is a string in the format:
<MajorVersion>.<MinorVersion>.<ErrataVersion>
where

* <MajorVersion> is an integer that represents the major version. Indicates a backward-incompatible change.

* <MinorVersion> is an integer that represents the minor version. Indicates a minor update. Redfish introduces
functionality but does not remove any functionality. The minor version preserves compatibility with earlier minor
versions.

* <ErrataVersion> is an integer that represents the errata version. Indicates a fix to the earlier version.

Any resource that a client discovers through hyperlinks that the service root or any service root-referenced service or
resource returns shall conform to the same protocol version that the service root supports.

A GET operation on the /redfish resource shall return this response body:

"vi": "/redfish/v1/"

6.7 Redfish-defined URIs and relative reference rules

Table 4 describes the Redfish-defined URIs that a Redfish service shall support:

Table 4 — Redfish-defined URIs

URI Returns Note

Version. A major update that does not

/redfish preserve compatibility with earlier minor Services shall support this URI.
versions.

/redfish/v1/ Redfish service root. Services shall support this URI.

/redfish/v1/odata Redfish OData service document. Services shall support this URI.

/redfish/v1/$metadata Redfish metadata document. Services shall support this URI.

/redfish/v1/openapi.yaml Redfish OpenAPI YAML document. Services should support this URI.

Version 1.15.1 Published 35

Redfish Specification DSP0266

URI Returns Note

Local copy of a Redfish schema file, where
/redfish/v1/Schemas/<SchemaFile> <SchemaFile> is the file name of the local Services should support this URI.
schema file.

In addition, Table 5 describes the URIs that services shall process without a trailing slash in one of these ways:

+ Redirect it to the associated Redfish-defined URI.

» Treat it as the equivalent URI to the associated Redfish-defined URI.

Table 5 — Redfish-defined URIs without trailing slashes

URI Associated Redfish-defined URI
/redfish/v1 /redfish/v1l/
/redfish/ /redfish

All other Redfish service-supported URIs shall match the resource URI patterns definitions, except the supplemental
resources that the @Redfish.Settings , @Redfish.ActionInfo , and @Redfish.CollectionCapabilities payload
annotations reference. The client shall treat the URIs for these supplemental resources as opaque.

All Redfish-defined URIs and URlIs starting with /redfish are reserved for future standardization by DMTF and
DMTF alliance partners, except OEM extension URlIs, which shall conform to the requirements of the OEM URIs
clause.

All relative references that the service uses shall start with either:

+ A double forward slash (//) and include the authority (network-path), such as //mgmt.vendor.com/redfish/v1/
Systems .

+ A single forward slash (/) and include the absolute-path, such as /redfish/vi/Systems .

For details, see RFC3986.

36 Published Version 1.15.1

DSP0266 Redfish Specification

7 Service requests

This clause describes the requests that clients can send to Redfish services.

7.1 Request headers

The HTTP Specification defines headers for request messages. Table 6 defines those headers and their
requirements for Redfish services and clients.

For Redfish services:

+ Redfish services shall process the headers in Table 6 as defined by the HTTP 1.1 Specification if the Service
requirement column contains Yes or Conditional.

+ Redfish services should process the headers in Table 6 and Table 7 as defined by the HTTP 1.1 Specification if
the Service requirement column contains No.

For Redfish clients (sending the HTTP requests):

+ Redfish clients shall include the headers in Table 6 as defined by the HTTP 1.1 Specification if the Client
requirement column contains Yes or Conditional.
Redfish clients should transmit the headers in Table 6 and Table 7 as defined by the HTTP 1.1 Specification if
the Client requirement column contains No.

Version 1.15.1 Published 37

Redfish Specification DSP0266

Table 6 — Request headers

Service Client Supported

Header . n
requirement requirement values

Description

Communicates to the server the media type or types
that this client is prepared to accept.

Services shall support resource requests with Accept
header values of application/json Or application/

json;charset=utf-8 .

Services shall support XML metadata requests with
Accept header values of application/xml or

application/xml;charset=utf-8 .

Services shall support OpenAPl YAML schema
Accept Yes No RFC7231 requests with Accept header values of application/

yaml Or application/yaml;charset=utf-8 oOr

application/vnd.oai.openapi Or application/

vnd.oai.openapi;charset=utf-8 .

Services shall support SSE requests with Accept
header values of text/event-stream Or text/event-

stream;charset=utf-8 .

Services shall support any request with Accept
header values of application/* ,
application/*;charset=utf-8 , */*, or

/;charset=utf-8 .

Indicates whether the client can handle gzip-encoded
responses. If a service cannot return an acceptable
response to a request with this header, it shall
respond with the HTTP 406 Not Acceptable status
code. If the request omits this header, the service
should not return gzip-encoded responses.

Accept-Encoding No No RFC7231

The languages that the client accepts in the response.
Accept-Language No No RFC7231 If the request omits this header, uses the service's
default language for the response.

Required for HTTP Basic authentication and OAuth

2.0.
RFC7617, 0

Authorizati Conditional Conditional
u orization It 1Tl RFCG749

A client can access unsecured resources without this
header on systems that support Basic authentication.

38 Published Version 1.15.1

DSP0266

Header

Content-Length

Content-Type

Host

If-Match

If-None-Match

Last-Event-ID

Max-Forwards

Service Client
requirement

Supported
requirement values

No No RFC7231

Conditional Conditional RFC7231

Yes No RFC7230

Conditional No RFC7232

No No RFC7232

No No HTML5 SSE

No No RFC7231

Redfish Specification

Description

The size of the message body.

To indicate the size of the body, a client can use the
Transfer-Encoding: chunked header

If a service needs to use Content-Length and does
not support Transfer-Encoding , it responds with the
HTTP 406 Not Acceptable status code.

The request format. Required for operations with a
request body.

Services shall accept the content-Type header set to
either application/json Or application/

json;charset=utf-8 .

It is recommended that clients use these values in
requests because other values can cause an error.

Enables support of multiple origin hosts at a single IP
address.

To ensure that clients update the resource from a
known state, puT and PATCH requests for resources
for which a service returns ETags shall support 1f-
Match .

While not required for clients, it is highly
recommended for pPuT and PATCH operations.

A service only returns the resource if the current ETag

of that resource does not match the ETag sent in this
header.

If the ETag in this header matches the resource's
current ETag, the GeT operation returns the HTTP
304 Not Modified status code.

The event source's last id field from the SSE stream.
Requests history event data.

See Server-sent events.
Limits gateway and proxy hops.

Prevents messages from remaining in the network
indefinitely.

Version 1.15.1

Published

39

Redfish Specification DSP0266

Header

OData-MaxVersion

OData-Version

Origin

User-Agent

Service Client Supported "
i . Description
requirement requirement values
The maximum OData version that an OData-aware
No No 4.0 .
client understands.
The OData version.
Services shall reject requests that specify an
unsupported OData version.
Yes No 4.0 PP
If a service encounters an unsupported OData
version, it should reject the request with the HTTP 412
Precondition Failed status code.
Fetch Living L)
Enables web applications to consume a Redfish
Yes No Standard, 3.1.

service while preventing CSRF attacks.
origin header

Traces product tokens and their versions.

Yes No RFC7231
The header can list multiple product tokens.
Defines the network hierarchy and recognizes
message loops.

No No RFC7230 < 2

Each pass inserts its own via header.

Redfish services shall understand and be able to process the headers in Table 7 as defined by this specification if
the Service requirement column contains Yes.

Header

X-Auth-Token

Table 7 — Request headers part 2

Service Client Supported

. . Description
requirement requirement values

Authenticates user sessions.
The token value shall be indistinguishable from
Opaque encoded random.
octet strings While services shall support this header, a client can
access unsecured resources without establishing a

Yes Conditional

session.

40

Published Version 1.15.1

https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header

DSP0266 Redfish Specification

7.2 GET (read requests)

7.2.1 GET (read requests) overview

The GET operation retrieves resources from a Redfish service. Clients make a GeT request to the individual
resource URI. Clients may obtain the resource URI from published sources, such as the OpenAP| document, or from
a resource identifier property in a previously retrieved resource response, such as the links property.

The service shall return the resource representation using one of the media types listed in the Accept header,
subject to the requirements of the media types. If the Accept header is absent, the service shall return the
resource's representation as application/json . Services may but are not required to support the convention of
retrieving individual properties within a resource by appending a segment containing the property name to the URI of
the resource.

+ The HTTP GeT operation shall retrieve a resource without causing any side effects.
* The service shall ignore the content of the body on a GET .

+ The GeT operation shall be idempotent in the absence of outside changes to the resource.

If supported by the service, clients can perform a conditional GeT operation by specifying an If-None-Match request
header that contains the ETag of the resource.

7.2.2 Resource collection requests

Clients retrieve a resource collection by making a GeT request to the resource collection URI. The response includes
the resource collection's properties and an array of its members.

No requirements are placed on implementations to return a consistent set of members when a series of requests that
use paging query parameters are made over time to obtain the entire set of members. These calls can result in
missed or duplicate elements if multiple GET requests use paging to retrieve the Members array instances.

+ Clients shall not make assumptions about the URIs for the members of a resource collection.

+ Retrieved resource collections shall always include the count (Members@odata.count) property to specify the total
number of entries in its Members array.

» Regardless of the next link (Members@odata.nextLink) property or paging, the count (Members@odata.count)
property shall return the total number of resources that the Members array references.

A subset of the members can be retrieved using client paging query parameters.
A service might not be able to return all of the contents of a resource collection request in a single response body. In

this case, the response can be paged by the service. If a service pages a response to a resource collection request,
the following rules shall apply:

Version 1.15.1 Published 41

Redfish Specification DSP0266

» Responses can contain a subset of the full resource collection's members.
+ Individual members shall not be split across response bodies.

» A next link (Members@odata.nextLink) property annotation shall be supplied in the response body with the URI to
the next set of members in the collection.

» The next link (Members@odata.nextLink) property shall adhere to the rules in the Next link property clause.

* GET operations on the next link (Members@odata.nextLink) property shall return the subsequent section of the
resource collection response.

7.2.3 Service root request
The root URL for Redfish version 1.x services shall be /redfish/vi/ .
The service returns the serviceRoot resource, as defined by this specification, as a response for the root URL.

Services shall not require authentication to retrieve the service root and /redfish resources.

7.2.4 OData service and metadata document requests

Redfish services expose two OData-defined documents at specific URIs to enable generic OData clients to navigate
the Redfish service.

« Service shall expose an OData metadata document at the /redfish/vi/$metadata URI.
» Service shall expose an OData service document at the /redfish/vi/odata URI.

» Service shall not require authentication to retrieve the OData metadata document or the OData service
document.

7.3 Query parameters

7.3.1 Query parameter overview

To paginate, retrieve subsets of resources, or expand the results in a single response, clients can include the query
parameters. Some query parameters apply only to resource collections.

Services:

+ Shall only support query parameters on GET operations.
+ Should support the $top, $skip , only , and excerpt query parameters.
* May support the $expand , $filter ,and $select query parameters.

» Shall include the ProtocolFeaturesSupported object in the service root, if the service supports query parameters.
o This object indicates which parameters and options have been implemented.

+ Shall ignore unknown or unsupported query parameters that do not begin with $.

42 Published Version 1.15.1

DSP0266 Redfish Specification

+ Shall use the & operator to separate multiple query parameters in a single request.

» Should ignore the = character if provided as the last character for the only or excerpt query parameters.
Services shall return:

* The HTTP 501 Not Implemented status code for any unsupported query parameters that start with ¢ .
» An extended error that indicates the unsupported query parameters for this resource.

+ The HTTP 400 Bad Request status code for any query parameters that contain values that are invalid, or values
applied to query parameters without defined values, such as excerpt or only .

Services should return:

* The HTTP 400 Bad Request status code with the QueryNotSupportedonResource message from the Base
Message Registry for any implemented query parameters that are not supported on a resource in the request.

+ The HTTP 400 Bad Request status code with the QueryNotSupportedonResource message from the Base
Message Registry for any supported query parameters that apply only to resource collections but are used on
singular resources. This includes query parameters such as $filter , $top, $skip ,and only .

» The HTTP 400 Bad Request status code with the QueryNotSupportedonOperation message from the Base
Message Registry for any supported query parameters on operations other than GeT .

Services shall process query parameters in this order:

e $filter
° $skip
* $top

» Apply server-side pagination
* $expand
* excerpt

* $select
Table 8 describes the query parameters:

Table 8 — Query parameters

Query parameter Description and example

Returns a subset of the resource's properties that match the defined Excerpt schema annotation.
If no Excerpt schema annotation is defined for the resource, the entire resource is returned.
excerpt

Example:

https://resource?excerpt

Version 1.15.1 Published 43

Redfish Specification

Query parameter

$expand=<string>

$filter=<string>

only

$select=<string>

$skip=<integer>

DSP0266

Description and example

Returns a hyperlink and its contents in-line with retrieved resources, as if a GeT call response was
included in-line with that hyperlink.

See The $expand query parameter.

Example:

https://resource?$expand=*($levels=3)
https://resourcecollection?$expand=. ($levels=1)

Applies to resource collections. Returns a subset of collection members that match the $filter
expression.

See The $filter query parameter.
Example:

https://resourcecollection?$filter=SystemType eq 'Physical’

Applies to resource collections. If the target resource collection contains exactly one member, clients can
use this query parameter to return that member's resource.

If the collection contains either zero members or more than one member, the response returns the
resource collection, as expected.

Services should return the HTTP 400 Bad Request with the QueryCombinationInvalid message from the
Base Message Registry if only is being combined with other query parameters.

Example:

https://resourcecollection?only

Returns a subset of the resource's properties that match the $select expression.
See The $select query parameter.

Example:

https://resource?$select=SystemType,Status

Applies to resource collections. Returns a subset of the members in a resource collection, or an empty set
of members if the $skip value is greater than or equal to the member count. This paging query parameter
defines the number of members in the resource collection to skip.

Example:

https://resourcecollection?$skip=5

44

Published Version 1.15.1

DSP0266 Redfish Specification

Query parameter Description and example

Applies to resource collections. Defines the number of members to show in the response.

Minimum value is o , though a value of e returns an empty set of members.
$top=<integer>
Example:

https://resourcecollection?$top=30

Services may support OEM-defined query parameters. OEM-defined query parameter names shall not contain
characters that conflict with syntax for query parameter parsing, such as & . OEM-defined query parameters shall be
in the form:

OEM-<OemIdentifier>-<ParameterName>
where

+ <OemIdentifier> is the unique identifier of the OEM, including possible subdivisioning, that follows the same
naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded for
improved readability.

* <ParameterName> is the parameter name.

For example, if Contoso defined a statusonly parameter, the query parameter would be 0EM-Contoso-StatusOnly .

7.3.2 The $expand query parameter

The $expand query parameter enables a client to request a response that includes not only the requested resource,
but also includes the contents of the subordinate or hyperlinked resources. The definition of this query parameter
follows the OData Protocol Specification.

The $expand query parameter has a set of possible options that determine which hyperlinks in a resource are
included in the expanded response. Some resources may already be expanded due to the resource's schema
annotation AutoExpand , such as the Temperature objectinthe Thermal resource.

Table 9 describes the Redfish-supported options for the $expand query parameter. The service may implement
some of these options but not others. Any other supported syntax for $expand is outside the scope of this
specification.

Version 1.15.1 Published 45

Redfish Specification

Option

asterisk (*)

$levels

period (.)

tilde (~)

DSP0266

Table 9 — The $expand query parameter options

Description

Shall expand all hyperlinks, including those in payload
annotations, such as @Redfish.Settings ,
@Redfish.ActionInfo , and
@Redfish.CollectionCapabilities

Number of levels the service should cascade the $expand
operation.

The default level shall be 1.

For example, $levels=2 expands both the hyperlinks in the
current resource (level 1), and the hyperlinks in the resulting
expanded resources (level 2).

Shall expand all hyperlinks not in any links property
instances of the resource, including those in payload
annotations, such as @Redfish.Settings ,
@Redfish.ActionInfo , and
@Redfish.CollectionCapabilities

Shall expand all hyperlinks found in all links property
instances of the resource.

Examples of $expand usage include:

+ GET ofa SoftwareInventoryCollection .

Example

https://resource?$expand=*

https://resourcecollection?$expand=. ($levels=2)

https://resourcecollection?$expand=.

https://resourcecollection?$expand=~

With $expand , the client can request multiple SoftwareInventory collection member resources in one request
rather than fetching them one at a time.

+ GET ofa ComputerSystem .

With $levels , a single GET request can include the subordinate resource collections, such as Processors and

Memory .

« GEeT all UUIDs in members of the computersystem collection.

To accomplish this result, include both $select and $expand on the URI.

The syntax is GET /redfish/v1/Systems?$select=UUID&$expand=.($levels=1)

When services execute s$expand , they may omit some of the referenced resource's properties.

When clients use s$expand , they should be aware that the payload may increase beyond what can be sent in a single

response.

46

Published

Version 1.15.1

DSP0266 Redfish Specification

If a service cannot return the payload due to its size, it shall return the HTTP 507 Insufficient Storage status code.

If a service cannot return the payload corresponding to an individual member of a resource collection, it should return
the @odata.id property for that member and should return extended information indicating the reason that member
was not returned, such as when a provider internal to the service returns an error or times out.

The following example expands the RoleCollection resource with the level setto 1:

"@odata.id": "/redfish/v1/AccountService/Roles",
"@odata.type": "#RoleCollection.RoleCollection",
"Name": "Roles Collection",
"Members@odata.count": 3,
"Members": [{
"@odata.id": "/redfish/v1/AccountService/Roles/Administrator",
"@odata.type": "#Role.vl_1_0.Role",
"Id": "Administrator",
"Name": "User Role",
"Description"”: "Admin User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureManager",
"ConfigureUsers", "ConfigureSelf", "ConfigureComponents"]
b A
"@odata.id": "/redfish/v1/AccountService/Roles/Operator",
"@odata.type": "#Role.vl_1_0.Role",
"Id": "Operator",
"Name": "User Role",
"Description": "Operator User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf",
"ConfigureComponents"]
b A
"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnly",
"@odata.type": "#Role.vl_1_©.Role",
"Id": "ReadOnly",
"Name": "User Role",
"Description": "ReadOnly User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf"]

7.3.3 The $select query parameter

The $select query parameter indicates that the implementation should return a subset of the resource's properties
that match the $select expression. If a request omits the $select query parameter, the response returns all
properties by default. The definition of this query parameter follows the OData Protocol Specification.

Version 1.15.1 Published 47

Redfish Specification DSP0266

The $select expression shall not affect the resource itself.
The $select expression defines a comma-separated list of properties to return in the response body.

The syntax for properties in objects or properties in arrays of objects shall be the object and property names
concatenated with a slash (/).

An example of $select usage is:

GET /redfish/v1/Systems/1?$select=Name,SystemType,Status/State

When services execute $select , they shall return all requested properties of the referenced resource. If a requested
property is an object, the service shall return the entire object. The @odata.id and @odata.type properties shall be
in the response payload and contain the same values as if $select was omitted. If the @odata.context property is
supported, it shall be in the response payload and should be in the context property recommended format. If the
@odata.etag property is supported, it shall be in the response payload and contain the same values as if $select
was omitted.

Any other supported syntax for $select is outside the scope of this specification.

7.3.4 The $filter query parameter

The $filter parameter enables a client to request a subset of the resource collection's members based on the
$filter expression. The definition of this query parameter follows the OData Protocol Specification.

The $filter query parameter defines a set of properties and literals with an operator.
A literal value can be:

+ A string enclosed in single quotes.
* A number.

+ A boolean value.

If the literal value does not match the data type for the specified property, the service should reject $filter requests
with the HTTP 400 Bad Request status code.

The ¢filter section of the OData ABNF Components Specification contains the grammar for the allowable syntax
of the ¢$filter query parameter, with the additional restriction that only built-in filter operations are supported.

Table 10 lists the Redfish-supported values for the $filter query parameter. Any other supported syntax for
$filter is outside the scope of this specification.

48 Published Version 1.15.1

DSP0266

Value

and

€q

ge

gt

le

1t

ne

not

or

When evaluating expressions, services shall use the following operator precedence:

Table 10 — The $filter query parameter options

Description

Precedence grouping
operator.

Logical and operator.

Equal comparison operator.

Greater than or equal to
comparison operator.

Great than comparison
operator.

Less than or equal to
comparison operator.

Less than comparison
operator.

Not equal comparison
operator.

Logical negation operator.

Logical or operator.

+ Grouping

+ Logical negation

» Relational comparison. gt, ge, 1t,and le all have equal precedence.

» Equality comparison. eq and ne both have equal precedence.

+ Logical and

* Logical or

Example

(Status/State eq 'Enabled’

Redfish Specification

and Status/Health eq 'OK') or SystemType eq ‘Physical’

ProcessorSummary/Count eq 2 and MemorySummary/TotalSystemMemoryGiB gt 64

ProcessorSummary/Count eq 2

ProcessorSummary/Count ge 2

N

ProcessorSummary/Count gt

MemorySummary/TotalSystemMemoryGiB le 64

MemorySummary/TotalSystemMemoryGiB 1t 64

SystemType ne 'Physical’

not (ProcessorSummary/Count eq 2)

ProcessorSummary/Count eq 2 or ProcessorSummary/Count eq 4

If the service receives an unsupported $filter query parameter, it shall reject the request and return the HTTP se1

Not Implemented status code.

7.4 HEAD

The Heap method differs from the GeT method in that it shall not return message body information.

However, the HEAD method completes the same authorization checks and returns all the same meta information and
status codes in the HTTP headers as a GeT method.

Version 1.

15.1

Published

49

Redfish Specification DSP0266

Services may support the HEAD method to:

» Return meta information in the form of HTTP response headers.

+ Verify hyperlink validity.
Services may support the HEAD method to verify resource accessibility.
Services shall not support any other use of the HEaD method.
The Heap method shall be idempotent in the absence of outside changes to the resource.

Services shall reject HEAD requests that contain query parameters. Services should return the HTTP 400 Bad
Request status code if provided with a query parameter in a HEAD request.

7.5 Data modification requests

7.5.1 Data modification requests overview
To create, modify, and delete resources, clients issue the following operations:

« POST (create)

+ PATCH (update)

« PUT (replace)

+ DELETE (delete)

+ POST (action) on the resource

The following clauses describe the success and error response requirements common to all data modification
requests.

7.5.2 Modification success responses

For create operations, the response from the service, after the create request succeeds, should be one of these
responses:

+ The HTTP 201 created status code with a body that contains the JSON representation of the newly created
resource after the request has been applied.

« The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the
processing of the request requires additional time to be completed.
o After processing of the task is complete, the created resource may be returned in response to a request to
the task monitor URI with the HTTP 201 created status code.

+ The HTTP 204 No Content status code with empty payload in the event that the service cannot return a
representation of the created resource.

50 Published Version 1.15.1

DSP0266 Redfish Specification

For update, replace, and delete operations, the response from the service, after successful modification, should be
one of the following responses:

+ The HTTP 200 ok status code with a body that contains the JSON representation of the targeted resource after
the modification has been applied, or, for the delete operation, a representation of the deleted resource.

+ The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the
processing of the modification requires additional time.
o After processing of the task is complete, the modified resource may be returned in response to a request to
the task monitor URI with the HTTP 200 ok status code.

+ The HTTP 204 No content status code with an empty payload in the event that service cannot return a
representation of the modified or deleted resource.

For details on successful responses to action requests, see POST (action).

7.5.3 Modification error responses

If the resource exists but does not support the requested operation, services shall return the HTTP 405 Method Not
Allowed status code.

Otherwise, if the service returns a client 4xx or service 5xx status code, the service encountered an error and the
resource shall not have been modified or created as a result of the operation.

7.6 PATCH (update)

To update a resource's properties, the service shall support the pATCH method.

The request body defines the changes to make to one or more properties in the resource that the request URI
references. The PATCH request does not change any properties that are not in the request body. Services may
accept a PATcH method with an empty JSON object, which indicates that the service should make no changes to the
resource.

For resources that allow for properties to not be updated immediately, clients can perform PATCH requests to a
designated settings resource. For more information, see the Settings resource clause.

See the Modification success responses clause for behavior when the PATCH operation is successful.

If supported by the service, clients can perform a conditional PATCH operation by specifying an 1f-Match or If-
None-Match request header that contains the ETag of the resource.

The implementation may reject the update on certain properties based on its own policies and, in this case, not make
the requested update.

A partial success of a PATCH operation occurs when a modification request for multiple properties results in at least

Version 1.15.1 Published 51

Redfish Specification DSP0266

one property updated successfully, but one or more properties could not be updated. In these cases, the service
shall return the HTTP 200 ok status code and a resource representation with extended information that lists the
properties that could not be updated. Examples include:

» A property is read-only, unknown, or unsupported.

« A service-side error occurred, such as a write failure for an EEPROM.

If all properties in the update request are read-only, unknown, or unsupported, but the resource can be updated, the
service shall return the HTTP 4600 Bad Request status code and an error response with messages that show the non-
updatable properties.

The service shall ignore OData annotations in the request body, such as the resource identifier, type, and ETag
properties, except for the conditions listed below. If the update request only contains OData annotations, the service
should return the HTTP 400 Bad Request status code with the Nooperation message from the Base Message
Registry, except for the conditions listed below.

» Writable reference properties.

» In deep operations when specifying subordinate resources.

In the absence of outside changes to the resource, the PATCH operation should be idempotent, although the original
ETag value may no longer match.

7.7 PATCH on array properties

The Array properties clause describes the three styles of array properties in a resource.

Within a PATCH request, the service shall accept null to remove an element, and accept an empty object {} to
leave an element unchanged. Array properties th