Redfish Specification

Supersedes: 1.12.0
Document Class: Normative
Document Status: Published

Document Language: en-US

Document Identifier: DSP0266

Date: 2021-04-08

Version: 1.12.1



Redfish Specification DSP0266

Copyright Notice

Copyright © 2015-2021 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

2 Published Version 1.12.1


http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

DSP0266 Redfish Specification

CONTENTS

T ROrEeWOrd (-} . . oo 11
1.1 Acknowledgments {-}. . . ... 11

2 INtrodUCtiON (-} . o .o 13
B S T o o1 14
4 Normative referenCes. . . . . .. 15
5 Terms, definitions, symbols, and abbreviated terms . ... ... ... ... . ... 17
Bl Hardware terms . . . .. e 17
5.1.1 baseboard management controller (BMC) . ........ . ... . . . . . . e 17

B 2 P M. L 17

B B KVM-IP 18

B A NIC 18

D D Pl 18

BB PCIE ..o 18
5.2Web development terms . ... .. . 18

5. 2.1 CORS . 18

B5.2.2 CRUD ... 18

5. 2.8 CORF . 18

B 2.4 eVeNt . . . 18

5. 2. D BXCEIPt L o 18

B 2 B HT TP . . oo 19

B 2. 7 HT TP S o 19

5.2.8 hypermedia APl . . . . 19

B 2 0 P . 19

5 2. 0 JSON. 19

B 2. I member . . . 19

D 2.2 MESSAQE . . . ottt 19

5. 2,13 0Data . . 19
5.2.14 OData service doCumeNt. . . . ... ... e 19

B 2.5 operation . . . .. 20

5.2 16 ParENt rESOUICE . . . . . ettt e et e 20
ST A o oo =T o Y/ 20

B 2. 18 reqUeSt . .. 20

D 2. 10 MBS PONSE . . o it 20
5.2.20 SUDSCHIPHION . . . . 20

B 2. 21 asK . . o 20
D222 task MONitOr. . . . . 20

B 2. 2 TP . oo 20

B 2. 24 TS . . 21

B 2. 25 XSS . . o 21

5.3 Redfish terms . .. .. 21
5.3 COlleCtioN . . . oo 21

Version 1.12.1 Published 3



Redfish Specification DSP0266

5.3.2 Redfish client. . .. ... 21
5.3.3 Redfish protocol . . ... ... e 21
5.3.4 Redfish schema . . ... ... .. e 21
5.3.5 Redfish ServiCe . . ... . 21

D 3 B rBSOUICE . . . i 21
5.3.7resource COlleCtion . ... ... ... e 22
5.3 8 rESOUICE trEE . . . o 22

5. 3.0 rESOUICE By P . .t 22
5.3.10 SEIVICE r00t . . . o o 22
5.3.11 subordinate resouUrCe. . . . ... .o 22

6 Typographical CONVENLIONS . . . . . ... e 23
T OV IV W . o o 24
7.1 G0alS . . o 24
7.2 Design tenets. . . ... 25
7. LImMitations . . . ... 25
7.4 Additional design background and rationale . .. ... ... ... . . . ... 26
741 REST-based interface. . . ... 26
7.4.2 Data-oriented . .. ... 26
7.4.3 Separation of protocol fromdatamodel . ..... ... ... ... . . .. ... 26
7.4.4 Hypermedia APl service root . . ... .. ... e 26
7.4.5 OpenAPI V3.0 SUPPOIt. . . oo 26
7.4.6 OData CONVENTIONS . . . . .ttt 27
7.5 Service elements . . ... . 27
7.5.1 Synchronous and asynchronous operation support . .. ........... . . i 27
7.5.2 Eventing mechanism. . ... ... 27
7.5.3 ACHiIONS . . . 28
7.5.4 Service diSCOVEIY . . .ottt e e e e 28
7.5.5 Remote access SUPPOMt . . ... it 28
7.0 S UMY . o oo 28
8 Protocol details .. ... .. . 29
8.1 Universal Resource Identifiers. . .. ... . e 29
8.2 HTTP mMethods . . ... . 31
B 3 HT TP redireCt . .. ..o 32
8.4 Media typPeS . . o o 32
B O ETagS. - . oot 32
8.6 ProtOCOl VerSION . . . . o 33
8.7 Redfish-defined URIs and relative referencerules .. ......... .. ... . . . . . . .. 34
O SerVICE rEQUESES . . . . oo e 36
9.1 Request headers . . . ... 36
9.2 GET (read reqUESES) . . . ..t 39
9.2.1 GET (read requestS) OVEIVIEW . . .. ..ot e e e 39
9.2.2 Resource collection requests . .. ... 39
9.2.3 Service root reqUESt . . ... ... e 40

4 Published Version 1.12.1



DSP0266 Redfish Specification

9.2.4 OData service and metadata documentrequests. ... .......... ... ... . .. 40
9.3 QUENY Parameters . . . . o 41
9.3.1 Query parameter OVEIVIEW . . . . . ...ttt et e e 41
9.3.2 The $expand query parameter . . .......... ... . 43
9.3.3 The $select query parameter . ...... ... . . 45
9.3.4 The $filter query parameter. . .. ... ... 46
0.4 HEADD. . . oo 47
9.5 Data modification requests . . . ... ... e 48
9.5.1 Data modification requests overview . ........... . . . . . e 48
9.5.2 Modification SUCCESS FESPONSES . . . . . .ottt ittt e e e e e et e e 48
9.5.3 Modification error reSPONSES. . . . . ..t 49
9.6 PATCH (Update). . .. ..o 49
9.7 PATCH on array properties . . .. ..o oo e e e e e 50
9.8 PUT (replace) . .. oo e 51
9.9 POST (Create) . . . ottt 51
9. 10 DELETE (delete) . . . .o 52
.11 POST (ACHON) . . ottt 52
9.12 Operation apply time . . . ... 54
9.13 Deep OperatioNS . ... 57
10 SEIVICE TESPONSES . . . . ottt et et et e e e 61
10.1 Response headers . . ... ... 61
T10.2 LinK header . . .. 63
10.3 Status COAES . . . ..o 63
10.4 OData metadata reSpONSES. . . . . ..ottt 66
10.4.1 OData metadata reSponsSes OVEIVIEW . . . . . . . .ttt e et e 66
10.4.2 OData $metadata . . ... ... ... . 66
10.4.2.1 Referencing other schemas . . . ... . . . 67
10.4.2.2 Referencing OEM extensions. . . ... ... e 67

10.4.3 OData service document. . . . . .. .. 68
T10.5 RESOUICE rESPONSES . . . o ottt it e e e e e e e e e e e e e 68
10,6 ErrOr reSPONSES . . . o oot 69
11 Data model. . . ... 71
1.1 RESOUICES . . . 71
11,2 RESOUICE I PSS . . . oo 71
11.3 Resource ColleCtions . . . . . .. e 72
T1.4 OEM r8SOUICES . . . ottt it e e e e e e e e e e 72
11.5 Common data tyPesS. . . . .o oo 73
11,51 Primitive types . . . .o 73
1152 Empty string values . . .. ... 73
11.53GUID and UUID values . . . . ... oo e e 74
11.5.4 Date-Time values . . . .. ... 74
11.5.5 Duration values . . . . ... 74
11.5.6 Reference properties. . . . ... .. 75

Version 1.12.1 Published 5



Redfish Specification DSP0266

11.5.7 Non-resource reference properties . . ...t 75
11.5.8 Array properties. . . . .o 76
11.5.9 Structured properties. . . .. ... 76
11.5.10 Message object . . . ... ... 77
T1.5.10.1 OVEIVIEW . . . o oo 77
11.5.10.2 Messageld format . . . .. ... . 78
1.6 Properties. . . ..o 79
11.6.1 Properties OVerview . . . . ... ... 79
11.6.2 Resource identifier (@odata.id) property . ........ .. . 79
11.6.3 Resource type (@odata.type) property . . . ... 79
11.6.4 Resource ETag (@odata.etag) property . ... ... o 80
11.6.5 Resource context (@odata.context) property . ... ... ... . 80
1,86 Id . o 81
11.6.7 Name. . .. 81
11.6.8 DeSCriplioN. . . . o 81
11.6.9 Memberld . . ... 81
11.6.10 Count (Members@odata.count) property . .. ... ... ... . . 81
11.6.11 Members . . ... 82
11.6.12 Next link (Members@odata.nextLink) property. . ............. ... ... 82
T1.8. 18 LINKS ..o 82
11.6.13.1 Reference to arelated resource . .. ... . . 82
11.6.13.2 References to multiple related resources . . .. ... ... ... . . 83
11.6.14 ACtions Property. . . . .. 83
11.6.14.1 Action representation . . ... .. . 83
11.6.14.2 ACHION MESPONSES. . . . o ittt e e 84
116,15 OBM. . oo 84
11.6.16 Status . .. ..o 85
11.7 Naming CONVENtIONS . . .. ... 85
1171 Naming rules . . . ..o 85
11.7.2URINaming rules. . . . ... 86
11.8 Extending standard reSOUrCeS . . . . . ... i 87
11.8.1 Extending standard resourCes OVEIVIEW . . .. ... ..ottt e 87
11.8.2 OEM property formatand content. . .. . .. ... ... . . 87
11.8.3 OEM-specified object naming . . . . ... ... .. . . 87
11.8.4 OEM res0UrCe tYPES . . . ottt 88
11.8.5 OEM registries. . . . ..o 88
11.8.6 OEM URIS . . . .o 89
11.8.7 OEM property examples . . ... ..o e 89
T1.8.8 OEM aCtioNs . . . ..o o 90
11.9 Payload annotations . . ... ... . . 91
11.9.1 Payload annotations overview. . . . . ... ... 91
11.9.2 Allowable values . . . . ... 91
11.9.3 Extended information. . . ... ... . . 92

6 Published Version 1.12.1



DSP0266 Redfish Specification

11.9.3.1 Extended object information . . . ... ... ... . ... 92
11.9.3.2 Extended property information . .. ... ... ... 93
11.9.4 Action info annotation . . ... . . . 93
11.9.5 Settings and settings apply time annotations . .............. ... ... ... ... . . ... .. 94
11.9.6 Operation apply time and operation apply time support annotations ................... 94
11.9.7 Maintenance window annotation. . . ... . . . . . 94
11.9.8 Collection capabilities annotation . ........... .. ... ... . . . . . .. 95
11.9.9 Requested count and allow over-provisioning annotations. . . .. ...................... 97
11.9.10 Zone affinity annotation . . . ... . ... 97
11.9.11 Supported certificates annotation .. .......... ... ... .. .. . . ... e 98
11.9.12 Deprecated annotation . . . ... ... . 98
11.10 Settings reSOUICE . . . . . o 98
11.11 Special resource situations . .. ........ ... . . 101
11411 OVeIVIEW . . oo 101
11.11.2 ADSENt FESOUICES . . . . .ttt e e e e e 101
1112 RegISIieS . . . o 101
11.13 Schema annotations . . . .. .. ... 102
11.13.1 Schema annotations overview. . . . ... ... 102
11.13.2 Description annotation. . .. ... . . 102
11.13.3 Long description annotation . . ... . . . 103
11.13.4 Resource capabilities annotation. . . .. ... .. .. 103
11.13.5 Resource URI patterns annotation . ... ... ... ... .. . . . . . . . . ... 103
11.13.6 Additional properties annotation . . ... . ... 104
11.13.7 Permissions annotation . . . . . ... ... . . 105
11.13.8 Required annotation . . ......... .. . . . . 105
11.13.9 Required on create annotation . ........... . ... .. .. 105
11.13.10 Units of measure annotation . . . ... . . . . 105
11.13.11 Expanded resource annotation . . . ... ... .. . . . . . . . 105
11.13.12 Owning entity annotation. . . . . ... . 106
11.13.13 Deprecated annotation . . ... . . . 106 .
1114 VErSIONING . . oo 106
1145 Localization . . .. ... 107
12 File naming and publication . . . . . ... . 108
12.1 Registry fille naming . . . . ... .. 108
12.2 Profile file naming . . . .. ... 108
12.3 Dictionary file Nnaming . . . ... .. 108
124 Localized file naming . . . .. ... 108
12.5 DMTF Redfish file repository . . . . ... 109
13 Schema definition languages. . . . ... ... 111
13.1 OData Common Schema Definition Language . . . ........... ... .. . . ... 111
13.1.1 OData Common Schema Definition Language overview . .. ........... ... .......... 111
13.1.2 File naming conventions for CSDL . . . . ... ... 111
13.1.3 Core CSDL files . . ..o 111

Version 1.12.1 Published 7



Redfish Specification DSP0266

13.1.4 CSDL format . . ... oo 112
13.1.4.1 Referencing other CSDLfiles . . .. ... ... 112
13.1.4.2 CSDL data SErVICES . . ..ottt 113

13.1.5 Elements of CSDL NameSPaces . . . . ...ttt it 113
13.1.5.1 Qualified names . . .. ... 114
13.1.5.2 Entity type and complex type elements . ... ... ... .. ... . .. .. 114
13.1.5.3 Action element . . ... 115
13.1.5.4 Action elementfor OEM actions . . . . .. ... ... .. 116
13.1.5.5 Action with aresponse body. . . . ... ... 116
13.1.5.6 Property element . ... ... ... . . 117
13.1.5.7 Navigation property element. . . .. .. ... 118
13.1.5.8 Enumtype element. . ... .. 118
13.1.5.9 Annotation element. . . ... ... . 119

13.2JSON SChema. . . .o 122

13.2.1 JSON Schema OVerVIEW . . . . . ..o e e 122

13.2.2 File naming conventions for JSSON Schema . . . ....... ... .. ... ... . . . . .. .. 122

13.2.3 Core JSSON Schemafiles . ... ... . 122

13.2.4 JSON Schema format . . .. ... .. 123

13.2.5 JSON Schema definitions body . ........ ... . . . . . . . . . . . . . . 123
13.2.5.1 Resource definitions in JSON Schema. . .. ... ... ... ... . . .. 123
13.2.5.2 Enumerations in JSON Schema. .......... ... .. 124
13.2.5.3 Actions in JSON Schema . . .. ... ... 125
13.2.5.4 OEM actions in JSON Schema. . ... .. ... 126
13.2.5.5 Action with aresponse body. . . . ... ... 127

13.2.6 JSON Schema terms .. ... ... .. 128

13.3 OpPENA P . o 129

13.3.1 OpenAPI OVEIVIEW . . ..o e 129

13.3.2 File naming conventions for OpenAPlschema. ................. ... ... .. ......... 129

13.3.3 Core OpenAPl schemafiles .. ... ... . e 129

13.3.4 0penapi.yaml. . ... 130

13.3.5 0penAPl file format. . .. ... ... 132

13.3.6 OpenAPl components body . ... .. ... . . . 132
13.3.6.1 Resource definitions in OpenAPI . ... ... 132
13.3.6.2 Enumerations in OpenAPl . . ... ... . . 133
13.3.6.3 Actions in OpenAPL. . . . 133
13.3.6.4 OEM actions in OpenAP | . . .. . 135

13.3.7 OpenAPl terms used by Redfish. . . . ... ... ... . . . . . . . 135

13.4 Schema modification rules . . ... ... .. 136
14 Service details . . ... 138
14,1 BEVenting. . . .o 138

1411 EVEeNting OVEIVIEW . . . oot 138

14.1.2 POST to subscription collection . .. ... .. . e 138

14.1.3 0penan SSE conNnection . ... ... ... i 139

8 Published Version 1.12.1



DSP0266 Redfish Specification

14.1.4 EventType-based eventing . . . . ... .. i 140
14.1.5 Subscribing to events . . ... ... . 140
14.1.6 Eventformats . ... ... 141
14.1.7 OEM eXIENSIONS . . . o o 142
14.2 Asynchronous operations . . . . ... ... 142
14.3 Resource tree stability . . . ... ... 144
144 DiSCOVEIY . . . it 144
14.4.1 DiSCOVENY OVEIVIEW . . . . . oottt e e e e e e e e e e e e e e e 144
14.4.2 UPnP compatibility . . ... ... 145
14.4. 3 USNformat . . ... . 145
1444 M-SEARCH response . . . .. ... e 145
14.4.5 Notify, alive, and shutdown messages . ........... ... .. . . ... 146
14.5 Server-sent EVENTS . . ... . 146
14.5.1 General . . ... 146
14.5.2 EVENt SEIVICE. . . . oo 147
14.5.2.1 Event message SSE stream. . . . ... ... . . 149
14.5.2.2 Metricreport SSE stream . . . . . . ... 150

T4.6 Update SErVICE. . . . oot 151
T4.6.1 OVEIVIEW . . . o oo 151
14.6.2 Software update types . .. ... ... 151
14.6.2.1 Simple updates . . . ... .. 151
14.6.2.2 Multipart HTTP push updates. . . . ... ... .. . e 151

15 Security details. . . ... 154
15.1 Transport Layer Security (TLS) protocol . . . ... ... e 154
15.1.1 Transport Layer Security (TLS) protocol overview . ............... ... ... .......... 154
15.1.2 Cipher suites . . ... oo e 154
15.1.3 Certificates . ... ... 155
15.2 8ensitive data . ... ... 155
15.3 Authentication . .. ... .. 155
15.3.1 Authentication overview . . ... .. . . . 155
15.3.2 Authentication requirements . . . ... ... 156
15.3.2.1 Resource and operation authentication requirements ... ...................... 156
15.3.2.2 HTTP header authentication requirements. . .. .......... ... ... .. ... . ... .... 156
15.3.2.3 Authentication failure requirements .. .......... ... ... . . .. ... 156

15.3.3 HTTP Basic authentication . . . .. .. ... ... . 157
15.3.4 Redfish session login authentication. . . ....... ... ... . . . . . . 157
15.3.4.1 Redfish login sessions . . ... .. . . 157
15.3.4.2 Session l0gin . . .o o 158
15.3.4.3 Session lifetime. . ... ... 159
15.3.4.4 Session terminationorlogout. . . ........ ... . ... 159

15.4 Authorization . . .. ... 159
15.4.1 Authorization overview . . . ... ... . 159
15.4.2 Privilege model . . . ... . 160

Version 1.12.1 Published 9



Redfish Specification DSP0266

15.4.2.1 ROIES. . o o 160

15.4.2.2 Restricted roles and restricted privileges . . .. ... ... . 161

15,423 OEMPPrivileges . . . ... 162

15.4.3 Redfish service operation-to-privilege mapping . .......... ... ... 162
15.4.3.1 Why specify operation-to-privilege mapping?. . . ......... ... ... ... 162

15.4.3.2 Representing operation-to-privilege mappings. . . ... ... e 162

15.4.3.3 Operation map Syntax. . .. ... ..ot e 163

15.4.3.4 Mapping overrides SyNtax. . . . . ...t 164

15.4.3.5 Property override example . ... ... 164

15.4.3.6 Subordinate override .. ... ... . 165

15.4.3.7 Resource URl override . . . . .. ... 166

15.4.3.8 Privilege AND and OR syntax. . . . ... .ot e 167

T15.5 ACCOUNT SEIVICE . . . o\ ottt e e e e 168
15.5.1 ACCOUNLt SEIVICE OVEIVIEW . . . . . o oo e e e e e e 168
15.5.2 Password management . . ... .. ... 168
15.5.3 Password change required handling. . .. .......... ... . . . . . . . . 169

15.6 Asynchronous tasks . ... . ... 169
15.7 Event subSCHiptioNs . . . . . . 169

16 Redfish Host Interface . . .. ... .. 170
17 Redfish composability . . ... .. . 171
17.1 CompositioN reqUESES . . . ... oo 172
17.1.1 Composition requests OVEIVIEW . . . .. ... . it e 172
17.1.2 Specific composition . . . ... ... 172

17.1.3 Constrained COmMpPOSItioN. . . .. .. ... 173
17.1.4 EXpandable reSOUICES . ... ... .. it e e 174

17.2 Updating @ composed re€SOUICE. . . . . . . .o e e e e 174

18 Aggregation . . . .. 175
18.1 Classes of aggregators . . . . ... ... . 175
18.1.1 Implicit and complex aggregators . . . . ... ... e 175
1812 USE CaSES . . o vttt ittt 176

18.2 Aggregation SErVICE. . . . . . . 176
18.2.1 Aggregation ServiCe OVEIVIEW . . . . . . .ttt 176

18.2.2 Aggregator requiremMents . ... ... . 176

18.2.3 Aggregates . ... oo 177

18.2.4 Aggregation sources and connection methods. . ........... ... ... ... 177

19 ANNEX A (informative) Change 10g. . . . ... ... 179
20 BIbliOgraphy . . . ..o 192

10 Published Version 1.12.1



DSP0266 Redfish Specification

1 Foreword {-}

The Redfish Forum of the DMTF develops the Redfish standard.

DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and
interoperability. For information about the DMTF, see DMTF.

This version supersedes version 1.12.1. For a list of the changes, see ANNEX A (informative) Change log.

1.1 Acknowledgments {-}

The DMTF acknowledges the following individuals for their contributions to the Redfish standard, including this
document and Redfish schemas, interoperability profiles, and message registries:

« Rafig Ahamed - Hewlett Packard Enterprise
 Richelle Ahlvers - Broadcom Inc.

« Jeff Autor - Hewlett Packard Enterprise
 David Black - Dell Inc.

- Jeff Bobzin - Insyde Software Corp.

+ Patrick Boyd - Dell Inc.

 David Brockhaus - Vertiv

 Richard Brunner - VMware Inc.

« Sean Byland - Cray Inc.

+ Lee Calcote - Seagate Technology

+ Keith Campbell - Lenovo

« P Chandrasekhar - Dell Inc.

« Barbara Craig - Hewlett Packard Enterprise
 Chris Davenport - Hewlett Packard Enterprise
¢ Gamma Dean - Vertiv

« Daniel Dufresne - Dell Inc.

« Samer El-Haj-Mahmoud - Arm Limited, Lenovo, Hewlett Packard Enterprise
» George Ericson - Dell Inc.

« Wassim Fayed - Microsoft Corporation

+ Kevin Ferguson - Vertiv

« Mike Garrett - Hewlett Packard Enterprise
 Steve Geffin - Vertiv

« Joe Handzik - Hewlett Packard Enterprise

» Jon Hass - Dell Inc.

Version 1.12.1 Published 1


https://www.dmtf.org/

Redfish Specification

Jeff Hilland - Hewlett Packard Enterprise
Chris Hoffman - Vertiv

Cactus Jiang - Vertiv

Barry Kittner - Intel Corporation

Steven Krig - Intel Corporation

Jennifer Lee - Intel Corporation

John Leung - Intel Corporation

Magnus Lundmark - Ericsson AB

Steve Lyle - Hewlett Packard Enterprise
Gunnar Mills - IBM

Jagan Molleti - Dell Inc.

Milena Natanov - Microsoft Corporation
Scott Phuong - Cisco Systems, Inc.
Michael Pizzo - Microsoft Corporation
Chris Poblete - Dell Inc.

Michael Raineri - Dell Inc.

Joseph Reynolds - IBM

Irina Salvan - Microsoft Corporation

Bill Scherer - Hewlett Packard Enterprise
Hemal Shah - Broadcom Inc.

Jim Shelton - Vertiv

Tom Slaight - Intel Corporation

Josiah Smith - Eaton

Donnie Sturgeon - Vertiv

Pawel Szymanski - Intel Corporation
Paul Vancil - Dell Inc.

Joseph White - Dell Inc.

Linda Wu - NVIDIA Corporation, Super Micro Computer, Inc.

DSP0266

12

Published

Version 1.12.1



DSP0266 Redfish Specification

2 Introduction {-}

Redfish is a standard that uses RESTful interface semantics to access a schema based data model to conduct
management operations. It is suitable for a wide range of devices, from stand-alone servers, to composable
infrastructures, and to large-scale cloud environments.

The initial Redfish scope targeted servers. The DMTF and its alliance partners expanded that scope to cover most data
center IT equipment and other solutions, and both in- and out-of-band access methods.

Additionally, the DMTF and other organizations that use Redfish as part of their industry standard or solution have
added educational material.

This document defines the RESTful interface protocol and the various concepts and services necessary to implement a
Redfish interface. The definition of the schema based data model and standard messages for the Redfish interface are
covered separately in the following documents:

- DMTF DSP8010, Redfish Schema Bundle, https://www.dmtf.org/dsp/DSP8010 contains the individual schema
definition files in multiple schema description languages.

- DMTF DSP0268, Redfish Schema Supplement, https://www.dmtf.org/dsp/DSP0268 contains the normative
descriptions and example payloads for all standard Redfish schema in a single reference guide.

- DMTF DSP8011, Redfish Standard Registries Bundle, https://www.dmtf.org/dsp/DSP8011 contains the message
registries used for error reporting and event messages.

Version 1.12.1 Published 13


https://www.dmtf.org/dsp/DSP8010
https://www.dmtf.org/dsp/DSP0268
https://www.dmtf.org/dsp/DSP8011

Redfish Specification DSP0266

3 Scope

This specification defines the required protocols, data model, behaviors, and other architectural components for an
interoperable, multivendor, remote, and out-of-band capable interface. This interface meets the cloud-based and
web-based IT professionals' expectations for scalable platform management. While large and hyperscale
environments are the primary focus, clients can use the specification for individual system management.

The specification defines the required elements for all Redfish implementations, and the optional elements that
system vendors and manufacturers can choose. This specification also defines at which points an implementation can
provide OEM-specific extensions.

The specification sets normative requirements for Redfish services and associated materials, such as Redfish schema
files. In general, the specification does not set requirements for Redfish clients but indicates how a client can
successfully and effectively access and use a Redfish service.

The specification does not require that implementations of the Redfish interfaces and functions require particular
hardware or firmware.

14 Published Version 1.12.1



DSP0266 Redfish Specification

4 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the latest
edition of the referenced document (including any amendments) applies.

« DMTF DSP0270, Redfish Host Interface Specification, https://www.dmtf.org/sites/default/files/standards/
documents/DSP0270_1.0.0.pdf

 Redfish Schema: RedfishExtensions v1.0.0, https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
 Transport Layer Security (TLS) Parameters, https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

« JSON Schema: A Media Type for Describing JSON Documents draft-handrews-json-schema-0T,
https://tools.ietf.org/html/draft-handrews-json-schema-01

« JSON Schema Validation: A Vocabulary for Structural Validation of JSON draft-handrews-json-schema-
validation-01, https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

« |ETF RFC1738, T. Berners-Lee et al, Uniform Resource Locators (URL), https://tools.ietf.org/html/rfc1738

 |ETF RFC3986, T. Berners-Lee et al, Uniform Resource Identifier (URI): Generic Syntax, https://tools.ietf.org/html/
rfc3986

« |ETF RFC5280, D. Cooper et al, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile,

« |ETF RFC6585, M. Nottingham et al, Additional HTTP Status Codes, https://tools.ietf.org/html/rfc6585

« |ETF RFC6901, P. Bryan, Ed. et al, JavaScript Object Notation (JSON) Pointer, https://tools.ietf.org/html/rfc6901

 |ETF RFC7230, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing,
https://tools.ietf.org/html/rfc7230

- |ETF RFC7231, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,
https://tools.ietf.org/html/rfc7231

« |ETF RFC7232, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests, https://tools.ietf.org/
html/rfc7232

 |ETF RFC7234, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Caching, https://tools.ietf.org/html/rfc7234

« |ETF RFC7525, Y. Sheffer et al, Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS), https://tools.ietf.org/html/rfc7525

« |ETF RFC7578, L. Masinter et al, Returning Values from Forms: multipart/form-data, https://tools.ietf.org/html/
rfc7578

« |ETF RFC7617, J. Reschke et al, The 'Basic' HTTP Authentication Scheme, https://tools.ietf.org/html/rfc7617

« |ETF RFC8259, T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format, https://tools.ietf.org/
html/rfc7617

 |ETF RFC8288, M. Nottingham, Web Linking, https://tools.ietf.org/html/rfc8288

Version 1.12.1 Published 15


https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288

Redfish Specification DSP0266

ISO 639-1:2002, Codes for the representation of names of languages - Part 1: Alpha-2 code, https://www.iso.org/
standard/22109.html

24 February 2014, OData Version 4.0 Part 1: Protocol, https://docs.oasis-open.org/odata/odata/v4.0/0s/
part1-protocol/odata-v4.0-os-part1-protocol.html

24 February 2014, OData Version 4.0 Part 3: Common Schema Definition Language (CSDL), https://docs.oasis-
open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

10 March 2016, OData Version 4.0 Plus Errata 03 OASIS Standard incorporating Draft 01 of Errata 03,
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/
Org.OData.Measures.V1.xml

20 November 2014, SNIA TLS Specification for Storage Systems, https://www.snia.org/tech_activities/standards/
curr_standards/tls

The OpenAPI Specification, https://swagger.io/specification/
The Unified Code for Units of Measure, https://ucum.org/ucum.html

24 December 2020, Fetch Living Standard, https://fetch.spec.whatwg.org/

9.2 Server-sent events in the HTML Living Standard, https://html.spec.whatwg.org/multipage/server-sent-
events.html

16

Published Version 1.12.1


https://www.iso.org/standard/22109.html
https://www.iso.org/standard/22109.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://swagger.io/specification/
https://ucum.org/ucum.html
https://fetch.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html

DSP0266 Redfish Specification

5 Terms, definitions, symbols, and abbreviated terms

Some terms and phrases in this document have specific meanings beyond their typical English meanings. This clause
defines those terms and phrases.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",
“need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional
cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7
specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal
English meaning.

The terms "clause", "subclause", "paragraph”, and "annex" in this document are to be interpreted as described in ISO/
IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,
Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative
content. Notes and examples are always informative elements.

The term "deprecated"” in this document is to be interpreted as material that is not recommended for use in new
development efforts. Existing and new implementations may use this material, but they should move to the favored
approach. Deprecated material may be implemented in order to achieve backwards compatibility. Deprecated
material should contain references to the last published version that included the deprecated material as normative
material and to a description of the favored approach. Deprecated material may be removed from the next major
version of the specification.

This document defines these additional terms:

5.1 Hardware terms

5.1.1 baseboard management controller (BMC)
embedded device or service

Note 1 to entry: Typically an independent microprocessor or system-on-chip with associated firmware in a computer
system that completes out-of-band systems monitoring and management-related tasks.

5.1.2 IPMI

Intelligent Platform Management Interface

Version 1.12.1 Published 17



Redfish Specification

5.1.3 KVM-IP

keyboard, video, mouse redirection over IP

5.1.4 NIC

network interface controller

5.1.5 PCI

Peripheral Component Interconnect

5.1.6 PCle

Peripheral Component Interconnect Express

5.2 Web development terms

5.2.1 CORS

cross-origin resource sharing

5.2.2 CRUD

basic Create, Read, Update, and Delete operations that any interface can support

5.2.3 CSRF

cross-site request forgery

5.2.4 event

data structure that corresponds to one or more alerts

5.2.5 excerpt

subset of data that is copied from one resource and presented in another resource

Note 1 to entry: An excerpt provides data in convenient locations without duplication of entire resources.

DSP0266

18

Version 1.12.1



DSP0266

5.2.6 HTTP

Hypertext Transfer Protocol

5.2.7 HTTPS

Hypertext Transfer Protocol Secure

Note 1 to entry: TLS secures HTTP.

5.2.8 hypermedia API

API that enables you to navigate through URIs that a service returns

5.291P

Internet Protocol

5.2.10 JSON

JavaScript Object Notation

5.2.11 member

single resource instance in a resource collection

5.2.12 message

complete HTTP-formatted or HTTPS-formatted request or response

Note 1 to entry: In the REST-based Redfish protocol, every request results in a response.

5.2.13 OData

Open Data Protocol (OData), as defined in OData Version 4.0 Part 1: Protocol

5.2.14 OData service document

resource that provides information about the service root for generic OData clients

Redfish Specification

Version 1.12.1 Published

19



Redfish Specification DSP0266

5.2.15 operation

HTTP POST, GET, PUT, PATCH, HEAD, and DELETE request methods that map to generic CRUD operations

5.2.16 parent resource

parent to another resource if the initial segment of the resource URI is the same as the URI of the other resource, but
is at least one level higher

Note 1 to entry: For example, /redfish/v1/Chassis/A88 is a parent resource of /redfish/v1/Chassis/A88/Assembly .

5.2.17 property
name-value pair in a Redfish-defined request or response

Note 1 to entry: A property can be any valid JSON data type.

5.2.18 request

message from a client to a service

5.2.19 response

message from a service to a client in response to a request message

5.2.20 subscription

registration of a destination to receive events

5.2.21 task

representation of a long-running operation

5.2.22 task monitor

opaque service-generated URI that the client who initiates the request can use to monitor an asynchronous operation

5.2.23 TCP

Transmission Control Protocol

20 Published Version 1.12.1



DSP0266 Redfish Specification

5.2.24 TLS

Transport Layer Security

5.2.25 XSS

cross-site scripting

5.3 Redfish terms

5.3.1 collection

see resource collection

5.3.2 Redfish client

communicates with a Redfish service and accesses one or more of the service's resources or functions

5.3.3 Redfish protocol

discovers, connects to, and inter-communicates with a Redfish service

5.3.4 Redfish schema

a set of human and machine-readable documents that define Redfish resources using one or more of the supported
schema definition languages

5.3.5 Redfish service

implementation of the protocols, resources, and functions that deliver the interface that this specification defines and
its associated behaviors for one or more managed systems

Note 1 to entry: Also known as the service.

5.3.6 resource

URI-addressable Redfish data structure

Version 1.12.1 Published 21



Redfish Specification DSP0266

5.3.7 resource collection

set of similar resources where the number of instances can shrink or grow

5.3.8 resource tree
tree structure of resources accessible through a well-known starting URI

Note 1 to entry: A client can discover the available resources on a Redfish service by following the resource hyperlinks
from the base of the tree.

5.3.9 resource type

set of definitions for properties and actions contained within a resource and documented in the Redfish schema files

5.3.10 service root

starting-point resource for locating and accessing the other resources and associated metadata that make up an
instance of a Redfish service

5.3.11 subordinate resource

is subordinate to another resource if the initial segment of the resource URI is the same as the URI of the other
resource, but is at least one level deeper

Note 1 to entry: For example, /redfish/v1/Chassis/A88/Assembly is a subordinate resource of the chassis resource
named AssS .

22 Published Version 1.12.1



DSP0266 Redfish Specification

6 Typographical conventions

The following typographical convention indicates deprecated material:

DEPRECATED
Deprecated material appears here.

END DEPRECATED

In places where this typographical convention cannot be used, such as tables or figures, the "DEPRECATED" label is
used alone.

Version 1.12.1 Published 23



Redfish Specification DSP0266

7 Overview

Redfish is a management standard that uses a data model representation with a RESTful interface.
Being RESTful, Redfish is easier to use and implement.

Being model-oriented, it can express the relationships between components and the semantics of the Redfish
services and components within them. The model is also easy to extend.

By requiring JSON representation, Redfish enables easy integration with programming environments. It is also easy to
interpret by humans.

An interoperable Redfish schema defines this model, which is freely available and published in OpenAPI YAML, OData
CSDL, and JSON Schema formats.

7.1 Goals

As an architecture, data model, and set of protocols that enable a client to access Redfish services, Redfish has these
goals.

Table 1 describes these goals:

Goal Purpose

Scalable Can scale on stand-alone machines or racks of equipment.

Flexible Can implement through existing hardware or entirely as a software service.
Extensible Can easily add new and vendor-specific capabilities to the data model.

Backward-compatible Can add capabilities while preserving investments in earlier implementations.

Interoperable Provides consistent functionality across multiple vendor implementations.

Standards-based Built on ubiquitous and secure protocols. Leverages other standards where applicable.

Simple Easy-to-use without the need for highly specialized programming skills or systems knowledge.

Lightweight Designed to reduce complexity and implementation costs. Minimizes the required footprint for implementations.

: Table 1 — Redfish goals

24 Published Version 1.12.1



DSP0266 Redfish Specification

7.2 Design tenets

To deliver these goals, Redfish:

 Provides a RESTful interface by using a JSON payload and a data model.

+ Separates the protocol from the data model, which enables the independent revision and use of each.

- Specifies versioning rules for protocols and schema.

 Leverages strength of ubiquitous standards where it meets architectural requirements, such as JSON, HTTP,
OData, OpenAPI, and the RFCs that this document references.

« Organizes the data model so that it provides clearly demarcated and value-add features in the same payload as
standardized items.

« Makes data in payloads as obvious in context as possible.

« Maintains implementation flexibility. Does not tie the interface to any particular underlying implementation or
architecture.

« Focuses on widely used capabilities. To avoid complexity, does not add functions that only a small percentage of
users value.

7.3 Limitations

Redfish minimizes the need for clients to complete upgrades by using strict versioning and forward-compatibility
rules, and separation of the protocols from the data model. However, Redfish does not guarantee that clients never
need to update their software. For example, clients might need to upgrade to manage new system or component
types, or update the data model.

Interoperable does not mean identical. Many elements of Redfish are optional. Clients should be prepared to discover
the optional elements by using the built-in discovery methods.

The resource tree reflects the topology of the system and its devices. Consequently, different hardware or device
types result in different resource trees, even for identical systems from the same manufacturer. References between
resources may result in a graph instead of a tree. Clients that traverse the resource tree should provide logic to avoid
infinite loops.

Additionally, not all Redfish resources use simple REST read-and-write semantics. Different use cases may follow
other types of client logic. For example, clients cannot simply read user credentials or certificates from one service
and write them to another service.

Finally, the hyperlink values between resources and other elements can vary across implementations. Clients should
not assume that they can reuse hyperlinks across different Redfish service instances.

Version 1.12.1 Published 25



Redfish Specification DSP0266

7.4 Additional design background and rationale

7.4.1 REST-based interface
Redfish exposes many service applications as RESTful interfaces. This document defines a RESTful interface.
Redfish defines a RESTful interface because it:

+ Enables a lightweight implementation, using fewer layers than previous standards.

 |s a prevalent access method in the industry.

 Is easy to learn, document, and implement in modern programming languages.

+ Has a number of development environments and a healthy tooling ecosystem.

« Fits with the design goal of simplicity.

 Equally applies to software application space as it does to embedded environments, which enables convergence
and sharing of code within the management ecosystem.

+ Adapts well to any data modeling language.

« Has industry-provided security and discovery mechanisms.

7.4.2 Data-oriented

The Redfish data model is developed by focusing on the contents of the payload. By concentrating on the contents of
the payload first, Redfish payloads are easily mapped to schema definition languages and encoding types. The data
model is defined in various schema languages, including OpenAPI YAML, OData CSDL, and JSON Schema.

7.4.3 Separation of protocol from data model

Redfish separates the protocol operations from the data model and versions the protocol independently from the
data model. This enables clients to extend and change the data model as needed without requiring the protocol
version to change.

7.4.4 Hypermedia API service root

Redfish has a single service root URI and clients can discover all resources through referenced URIs. The hypermedia
APl enables the discovery of resources through hyperlinks.

7.4.5 OpenAPI v3.0 support

The OpenAPI v3.0 provides a rich ecosystem of tools for using RESTful interfaces that meet the design requirements
of that specification. Starting with Redfish Specification v1.6.0, the Redfish schemas support the OpenAPI YAML file
format and URI patterns that conform to the OpenAPI Specification were defined. Conforming Redfish services that

26 Published Version 1.12.1



DSP0266 Redfish Specification

support the Redfish protocol version v1.6.0 or later implement those URI patterns to enable use of the OpenAPI
ecosystem.

For details, see OpenAPI Specification v3.0.

7.4.6 OData conventions

With the popularity of RESTful APIs, there are nearly as many RESTful interfaces as there are applications. While
following REST patterns helps promote good practices, due to design differences between the many RESTful APIs
there few common conventions between them.

To provide for interoperability between APIs, OData defines a set of common RESTful conventions and annotations.
Redfish follows OData conventions for describing schema, URL conventions, and definitions for typical properties in a
JSON payload.

7.5 Service elements

7.5.1 Synchronous and asynchronous operation support

Some operations can take more time than a client typically wants to wait. For this reason, some operations can be
asynchronous at the discretion of the service. The request portion of an asynchronous operation is no different from
the request portion of a synchronous operation.

To determine whether an operation was completed synchronously or asynchronously, clients can review the HTTP
status codes. For more information, see the Asynchronous operations clause.

7.5.2 Eventing mechanism

Redfish enables clients to receive messages outside the normal request and response paradigm. The service uses
these messages, or events, to asynchronously notify the client of a state change or error condition, usually of a time
critical nature.

This specification defines two styles of eventing:
e Push-style eventing.

When the service detects the need to send an event, it calls HTTP posT to push the event message to the client.
Clients can enable reception of events by creating a subscription entry in the event service, or an administrator
can create subscriptions as part of the Redfish service configuration.

+ Server-sent events (SSE)-style eventing.

Version 1.12.1 Published 27



Redfish Specification DSP0266

The client opens an SSE connection to the service through a GET on the ServersentEventuri -specified URI in
the event service.

For information, see the Eventing clause.

7.5.3 Actions

Actions are Redfish operations that do not easily map to RESTful interface semantics. These types of operations may
not directly affect properties in the Redfish resources. The Redfish schema defines certain standard actions for
common Redfish resources. For these standard actions, the Redfish schema contains the normative language on the
behavior of the action.

7.5.4 Service discovery

While the service itself is at a well-known URI, clients need to discover the network address of the service. Like UPnP,
Redfish uses SSDP for discovery. A wide variety of devices, such as printers and client operating systems, support
SSDP. It is simple, lightweight, IPv6 capable, and suitable for implementation in embedded environments.

For more information, see the Discovery clause.

7.5.5 Remote access support

Remote management functionality typically includes access mechanisms for redirecting operator interfaces such as
serial console, keyboard video and mouse (KVM-IP), command shell, or command-line interface, and virtual media.
While these mechanisms are critical functionality, they cannot be reasonably implemented as a RESTful interface.

Therefore, this standard does not define the protocols or access mechanisms for those services but encourages

implementations that leverage existing standards. However, the Redfish schema includes resources and properties
that enable client discovery of these capabilities and access mechanisms to enable interoperability.

7.6 Security

The challenge of remote interface security is to protect both the interface and exchanged data. To accomplish this,
Redfish provides authentication and encryption. As part of this security, Redfish defines and requires minimum levels
of encryption.

For more information, see the Security details clause.

28 Published Version 1.12.1



DSP0266 Redfish Specification

8 Protocol details

In this document, the Redfish protocol refers to the RESTful mapping to HTTP, TCP/IP, and other protocol, transport,
and messaging layer aspects. HTTP is the application protocol that transports the messages and TCP/IP is the
transport protocol. The RESTful interface is a mapping to the message protocol.

The Redfish protocol is designed around a web service-based interface model, which provides network and
interaction efficiency for both user interface (Ul) and automation usage. Specifically, the protocol can leverage
existing tool chains.

Table 2 describes the items that the Redfish protocol uses:

Item Description

HTTP methods Maps to common CRUD operations.

Actions Expands operations beyond CRUD-type operations.
Media types Negotiates the type of data sent in the message body.
HTTP status codes Indicates the success or failure of the server's request.
Error responses Returns more information than HTTP status codes.
TLS Secures messages. See Security details.

Asynchronous semantics Manages long-running operations.

: Table 2 — Redfish protocol

A Redfish interface shall be exposed through a web service endpoint implemented by using HTTP version 1.1. See
RFC7230, RFC7231, and RFC7232.

The subsequent clauses describe how the Redfish interface uses and adds constraints to HTTP to ensure
interoperability of Redfish implementations.

8.1 Universal Resource Identifiers

A Universal Resource Identifier (URI) identifies a resource, including the service root and all Redfish resources.

« A URI shall identify each unique instance of a resource.

» URIs shall not include any RFC1738-defined unsafe characters.
o Forexample, the {, }, , |, ~, ~, [, 1, ,and \ characters are unsafe because gateways and other

transport agents can sometimes modify these characters.

Version 1.12.1 Published 29



Redfish Specification DSP0266

o Do not use the # character for anything other than the start of a fragment.

« URIs shall not include any percent-encoding of characters. This restriction does not apply to the query
parameters portion of the URI.

A GET operation on a URI returns a representation of the resource with properties and hyperlinks to associated
resources. The service root URI is well known and is based on the protocol version.

To discover the URIs to additional resources, extract the associated resource hyperlinks from earlier responses. The
hypermedia APl enables the discovery of resources through hyperlinks.

Redfish considers the RFC3986-defined scheme, authority, service root, and version, and unique resource path
component parts of the URI.

For example, this URI:

https://mgmt.vendor.com/redfish/v1/Systems/1

Contains these component parts:

* https: isthe scheme.
¢ mgmt.vendor.com is the authority to which to delegate the URI.
* redfish/v1 is the service root and version.

« Systems/1 is the unique resource path.
Ina UR:

« The scheme and authority component parts are not part of the unique resource path because redirection
capabilities and local operations may cause the connection portion to vary.

« The service root and resource path component parts uniquely identify the resource in a Redfish service.
In an implementation:

» The resource path component part shall be unique.
« Arelative reference in the body and HTTP headers payload can identify a resource in that same implementation.

« An absolute URI in the body and HTTP headers payload can identify a resource in a different implementation.
For the absolute URI definition, see RFC3986.

For example, a PosT operation may return the /redfish/vi/systems/2 URIinthe Location header of the response,
which points to the PosT -created resource.

30 Published Version 1.12.1



DSP0266 Redfish Specification

Assuming that the client connects through the mgmt.vendor.com appliance, the client accesses the resource through
the https://mgmt.vendor.com/redfish/v1/Systems/2 absolute URI.

URIs that conform to RFC3986 may also contain the query, ?query , and frag, #frag, components. For information
about queries, see Query parameters. When a URI includes a fragment ( frag ) to submit an operation, the server
ignores the fragment.

If a property in a response references another property within a resource, use the RFC6901-defined URI fragment
identifier representation format. If the property is a reference property in the schema, the fragment shall reference a

valid resource identifier. For example, the following fragment identifies a property at index 0 of the Fans array in the
/redfish/v1/Chassis/MultiBladeEncl/Thermal resource:

"@odata.id": "/redfish/vl/Chassis/MultiBladeEncl/Thermal#/Fans/0"

For requirements on constructing Redfish URIs, see the resource URI patterns annotation clause.

8.2 HTTP methods

Table 3 describes the mapping of HTTP methods to the Redfish-supported operations. If the Required column
contains Yes, a Redfish interface shall support the HTTP method. If the Required column contains No, a Redfish
interface may support the HTTP method.

HTTP method Interface semantic

Required

Create resource

POST Resource action Yes
Eventing

GET Retrieve resource Yes

PUT Replace resource No

PATCH Update resource Yes

DELETE Delete resource Yes

HEAD Retrieve resource header No

Retrieve header
OPTIONS No

Cross-origin resource sharing (CORS) preflight

: Table 3 — Mapping of HTTP methods to Redfish-supported operations

Version 1.12.1 Published 31



Redfish Specification DSP0266

For HTTP methods that the Redfish service does not support or that Table 3 omits, the Redfish service shall return the
HTTP 465 Method Not Allowed status code or the HTTP 501 Not Implemented status code.

8.3 HTTP redirect

HTTP redirect enables a service to redirect a request to another URL. Among other things, HTTP redirect enables
Redfish resources to alias areas of the data model.

All Redfish clients shall correctly handle HTTP redirect.

The service for the redirected resource shall enforce the authentication and authorization requirements for the
redirected resource.

8.4 Media types

Some resources may be available in more than one type of representation. The media type indicates the
representation type.

In HTTP messages, the media type is specified in the content-Type header. To tell a service to return the response
through certain media types, the client sets the HTTP Accept header to a list of the media types.

 All resources shall be available through the JSON application/json media type.

+ Redfish services shall make every resource available in a JSON-based representation as a JSON object, as
specified in RFC8259. Receivers shall not reject a JSON-encoded message, and shall offer at least one JSON-
based response representation. An implementation may offer additional non-JSON media type representations.

To request compression in the response body, clients specify an Accept-Encoding request header.

8.5 ETags

To reduce unnecessary RESTful accesses to resources, the Redfish service should support the association of a separate
entity tag (ETag) with each resource.

« Implementations should support the return of ETag properties for each resource.
+ Implementations should support the return of ETag headers for each single-resource response.

« Implementations shall support the return of ETag headers for GET requests of ManagerAccount resources.

Because the service knows whether the new version of the object is substantially different, the service generates and
provides the ETag as part of the resource payload.

32 Published Version 1.12.1



DSP0266 Redfish Specification

The ETag mechanism supports both strong and weak validation. If a resource supports an ETag, it shall use the
RFC7232-defined ETag.

This specification does not mandate a particular algorithm for ETag creation, but ETags should be highly collision-free.
An ETag can be:

« Ahash
» A generation ID
+ Atime stamp

« Some other value that changes when the underlying object changes

If a client calls PUT or PATCH to update a resource, it should include an ETag from a previous GeT in the HTTP If-
Match or If-None-Match header. If a service supports the return of the ETag header on a resource, it may respond
with the HTTP 428 Precondition Required status code if the If-Match or If-None-Match header is missing from the
PUT Or PATCH request for the same resource, as specified in RFC6585.

In addition to the return of the ETag property on each resource, a Redfish service should return the ETag header on:

e Aclient puT, POST,or PATCH operation

« A GeT operation for an individual resource

The format of the ETag header is:

ETag: <string>

8.6 Protocol version

The protocol version is separate from the resources' version or the Redfish schema version that the resources
support.

Each Redfish protocol version is strongly typed by using the URI of the Redfish service in combination with the
resource obtained at that URI, called the ServiceRoot resource.

The root URI for this version of the Redfish protocol shall be /redfish/vi/ .
The URI defines the major version of the protocol.

The Redfishversion property of the ServiceRoot resource defines the protocol version, which includes the major
version, minor version, and errata version of the protocol, as defined in the Redfish schema for that resource.

The protocol version is a string in the format:

Version 1.12.1 Published 33



Redfish Specification DSP0266

<MajorVersion>.<MinorVersion>.<ErrataVersion>
where

e <MajorVersion> is an integer that represents the major version. Indicates a backward-incompatible change.

¢ <MinorVersion> is an integer that represents the minor version. Indicates a minor update. Redfish introduces
functionality but does not remove any functionality. The minor version preserves compatibility with earlier minor
versions.

e <ErrataVersion> is an integer that represents the errata version. Indicates a fix to the earlier version.

Any resource that a client discovers through hyperlinks that the service root or any service root-referenced service or
resource returns shall conform to the same protocol version that the service root supports.

A GET operation on the /redfish resource shall return this response body:

"vi": "/redfish/v1/"

8.7 Redfish-defined URIs and relative reference rules
Table 4 describes the Redfish-defined URIs that a Redfish service shall support:

URI Returns Note

T Version. A major update that does not preserve compatibility with earlier minor  Services shall support this
redaris

versions. URL.
Services shall support this
URI.

/redfish/v1/ Redfish service root.

Services shall support this
URL.

/redfish/v1/odata Redfish OData service document.

Services shall support this
/redfish/vl/$metadata  Redfish metadata document. A

URI.
/redfish/v1/ ) Services should support this
Redfish OpenAPI YAML document.
openapi.yaml URI.

: Table 4 — Redfish-defined URIs

In addition, Table 5 describes the URIs that services shall process without a trailing slash in one of these ways:

34 Published Version 1.12.1



DSP0266 Redfish Specification

+ Redirect it to the associated Redfish-defined URI.
« Treat it as the equivalent URI to the associated Redfish-defined URI.

URI Associated Redfish-defined URI
/redfish/v1 /redfish/v1/
/redfish/ /redfish

: Table 5 — Redfish-defined URIs without trailing slashes

All other Redfish service-supported URIs shall match the resource URI patterns definitions, except the supplemental
resources that the @Redfish.Settings , @Redfish.ActionInfo, and @Redfish.CollectionCapabilities payload
annotations reference. The client shall treat the URIs for these supplemental resources as opaque.

All Redfish-defined URIs and URIs starting with /redfish are reserved for future standardization by DMTF and DMTF
alliance partners, except OEM extension URIs, which shall conform to the requirements of the OEM URIs clause.

All relative references that the service uses shall start with either:

« A double forward slash ( // ) and include the authority (network-path), such as //mgmt.vendor.com/redfish/v1/
Systems .

« Asingle forward slash ( /) and include the absolute-path, such as /redfish/vi/Systems .

For details, see RFC3986.

Version 1.12.1 Published 35



Redfish Specification DSP0266

9 Service requests

This clause describes the requests that clients can send to Redfish services.

9.1 Request headers

The HTTP Specification defines headers for request messages. Table 6 defines those headers and their requirements
for Redfish services and clients.

For Redfish services:

« Redfish services shall process the headers in Table 6 as defined by the HTTP 1.7 Specification if the Service
requirement column contains Yes or Conditional.

« Redfish services should process the headers in Table 6 and Table 7 as defined by the HTTP 1.7 Specification if the
Service requirement column contains No.

For Redfish clients (sending the HTTP requests):

« Redfish clients shall include the headers in Table 6 as defined by the HTTP 1.1 Specification if the Client
requirement column contains Yes or Conditional.

« Redfish clients should transmit the headers in Table 6 and Table 7 as defined by the HTTP 1.7 Specification if the
Client requirement column contains No.

36 Published Version 1.12.1



DSP0266

Service Client Supported
Header . .

requirement requirement values
Accept Yes No RFC7231
Accept-

No No RFC7231
Encoding
Accept-

No No RFC7231
Language
Authorization Conditional Conditional RFC7617
Content-

No No RFC7231
Length
Content-Type Conditional Conditional RFC7231

Redfish Specification

Description

Communicates to the server the media type or types that this client is prepared to
accept.

Services shall support resource requests with Accept header values of

application/json Or application/json;charset=utf-8.

Services shall support XML metadata requests with Accept header values of

application/xml or application/xml;charset=utf-8 .

Services shall support OpenAPl YAML schema requests with Accept header
values of application/yaml or application/yaml;charset=utf-8 oOr application/

vnd.oai.openapi Or application/vnd.oai.openapij;charset=utf-8.

Services shall support SSE requests with Accept header values of text/event-

stream Or text/event-stream;charset=utf-8 .

Services shall support any request with Accept header values of application/*,
application/*;charset=utf-8 , */* 6 or */*;charset=utf-8.

Indicates whether the client can handle gzip-encoded responses. If a service
cannot return an acceptable response to a request with this header, it shall

respond with the HTTP 46 Not Acceptable status code. If the request omits this
header, the service should not return gzip-encoded responses.

The languages that the client accepts in the response. If the request omits this
header, uses the service's default language for the response.

Required for HTTP basic authentication.

A client can access unsecured resources without this header on systems that
support basic authentication.

The size of the message body.

To indicate the size of the body, a client can use the Transfer-Encoding: chunked
header.

If a service needs to use Content-Length and does not support Transfer-
Encoding , it responds with the HTTP 466 Not Acceptable status code.

The request format. Required for operations with a request body.

Services shall accept the Content-Type header set to either application/json or

application/json;charset=utf-8 .

It is recommended that clients use these values in requests because other values
can cause an error.

Version 1.12.1

Published 37



Redfish Specification

Header

Host

If-Match

If-None-Match

Last-Event-ID

Max-Forwards

OData-

MaxVersion

OData-Version

Origin

User-Agent

: Table 6 — Request headers

Service

Client

Supported

requirement requirement values

Yes

Conditional

No

No

No

Yes

Yes

Yes

No

No

No

No

No

No

No

No

RFC7230

RFC7232

RFC7232

HTML5 SSE

RFC7231

4.0

4.0

Fetch
Living
Standard,
3.1.
Origin

header

RFC7231

RFC7230

DSP0266

Description

Enables support of multiple origin hosts at a single IP address.

To ensure that clients update the resource from a known state, putT and PATCH
requests for resources for which a service returns ETags shall support If-Match .

While not required for clients, it is highly recommended for put and PATCH
operations.

A service only returns the resource if the current ETag of that resource does not
match the ETag sent in this header.

If the ETag in this header matches the resource's current ETag, the GET operation
returns the HTTP 304 Not Modified status code.

The event source's last id field from the SSE stream. Requests history event data.
See Server-sent events.
Limits gateway and proxy hops.

Prevents messages from remaining in the network indefinitely.

The maximum OData version that an OData-aware client understands.

The OData version.

Services shall reject requests that specify an unsupported OData version.

If a service encounters an unsupported OData version, it should reject the request
with the HTTP 412 Precondition Failed status code.

Enables web applications to consume a Redfish service while preventing CSRF
attacks.

Traces product tokens and their versions.
The header can list multiple product tokens.

Defines the network hierarchy and recognizes message loops.

Each pass inserts its own via header.

38

Published Version 1.12.1


https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header

DSP0266 Redfish Specification

Redfish services shall understand and be able to process the headers in Table 7 as defined by this specification if the

Service requirement column contains Yes.

Service Client L.
Header ) ) Supported values  Description
requirement requirement

Authenticates user sessions.

X-Auth- Opaque encoded The token value shall be indistinguishable from random.

es Conditional . . . . .
Token octet strings While services shall support this header, a client can access unsecured

resources without establishing a session.

: Table 7 — Request headers part 2

9.2 GET (read requests)

9.2.1 GET (read requests) overview

The GET operation retrieves resources from a Redfish service. Clients make a GET request to the individual resource
URI. Clients may obtain the resource URI from published sources, such as the OpenAPl document, or from a resource
identifier property in a previously retrieved resource response, such as the links property.

The service shall return the resource representation using one of the media types listed in the Accept header, subject
to the requirements of the media types. If the Accept header is absent, the service shall return the resource's
representation as application/json . Services may but are not required to support the convention of retrieving
individual properties within a resource by appending a segment containing the property name to the URI of the

resource.

« The HTTP GET operation shall retrieve a resource without causing any side effects.
« The service shall ignore the content of the body on a GeT .

« The GeT operation shall be idempotent in the absence of outside changes to the resource.

If supported by the service, clients can perform a conditional GET operation by specifying an If-None-Match request
header that contains the ETag of the resource.

9.2.2 Resource collection requests

Clients retrieve a resource collection by making a GET request to the resource collection URI. The response includes

the resource collection's properties and an array of its members.

No requirements are placed on implementations to return a consistent set of members when a series of requests that
use paging query parameters are made over time to obtain the entire set of members. These calls can result in
missed or duplicate elements if multiple GET requests use paging to retrieve the Members array instances.

Version 1.12.1 Published 39



Redfish Specification DSP0266

 Clients shall not make assumptions about the URIs for the members of a resource collection.
 Retrieved resource collections shall always include the count ( Members@odata.count ) property to specify the total

number of entries in its Members array.

» Regardless of the next link ( Members@odata.nextLink ) property or paging, the count ( Members@odata.count )
property shall return the total number of resources that the Members array references.

A subset of the members can be retrieved using client paging query parameters.

A service might not be able to return all of the contents of a resource collection request in a single response body. In
this case, the response can be paged by the service. If a service pages a response to a resource collection request, the
following rules shall apply:

« Responses can contain a subset of the full resource collection's members.

 Individual members shall not be split across response bodies.

« A next link ( Members@odata.nextLink ) property annotation shall be supplied in the response body with the URI to
the next set of members in the collection.

« The next link ( Members@odata.nextLink ) property shall adhere to the rules in the Next link property clause.

e GET operations on the next link ( Members@odata.nextLink ) property shall return the subsequent section of the

resource collection response.

9.2.3 Service root request
The root URL for Redfish version 1.x services shall be /redfish/vi/ .
The service returns the serviceRoot resource, as defined by this specification, as a response for the root URL.

Services shall not require authentication to retrieve the service root and /redfish resources.

9.2.4 OData service and metadata document requests

Redfish services expose two OData-defined documents at specific URIs to enable generic OData clients to navigate
the Redfish service.

« Service shall expose an OData metadata document at the /redfish/vi/$metadata URI.
 Service shall expose an OData service document at the /redfish/vi/odata URI.

 Service shall not require authentication to retrieve the OData metadata document or the OData service
document.

40 Published Version 1.12.1



DSP0266 Redfish Specification

9.3 Query parameters

9.3.1 Query parameter overview

To paginate, retrieve subsets of resources, or expand the results in a single response, clients can include the query
parameters. Some query parameters apply only to resource collections.

Services:

« Shall only support query parameters on GET operations.
« Should support the $top, $skip, only, and excerpt query parameters.
« May support the $expand , $filter ,and $select query parameters.

+ Shall include the ProtocolFeaturessupported object in the service root, if the service supports query parameters.
o This object indicates which parameters and options have been implemented.

 Shall ignore unknown or unsupported query parameters that do not begin with $ .

« Shall use the & operator to separate multiple query parameters in a single request.
Services shall return:

e The HTTP 501 Not Implemented status code for any unsupported query parameters that start with $ .
« An extended error that indicates the unsupported query parameters for this resource.

« The HTTP 4ee Bad Request status code for any query parameters that contain values that are invalid, or values
applied to query parameters without defined values, such as excerpt or only .

Services should return:

« The HTTP 4@ Bad Request status code with the QueryNotSupportedonResource message from the Base Message
Registry for any implemented query parameters that are not supported on a resource in the request.

e The HTTP 400 Bad Request status code with the QueryNotSupportedonResource message from the Base Message
Registry for any supported query parameters that apply only to resource collections but are used on singular
resources. This includes query parameters such as $filter, $top, $skip,and only .

e The HTTP 400 Bad Request status code with the QueryNotSupportedonOperation message from the Base

Message Registry for any supported query parameters on operations other than GeT .

Services shall process query parameters in this order:

e $filter
e $skip
e $top

Version 1.12.1 Published 41



Redfish Specification DSP0266

« Apply server-side pagination

e $expand
¢ excerpt

e $select

Table 8 describes the query parameters:

Query parameter Description and example

excerpt

$expand=<string>

$filter=<string>

only

Returns a subset of the resource's properties that match the defined Excerpt schema annotation.
If no Excerpt schema annotation is defined for the resource, the entire resource is returned.
Example:

https://resource?excerpt

Returns a hyperlink and its contents in-line with retrieved resources, as if a GeT call response was included in-line with
that hyperlink.

See The $expand query parameter.

Example:

https://resource?$expand=*($levels=3)

https://resourcecollection?$expand=. ($levels=1)

Applies to resource collections. Returns a subset of collection members that match the $filter expression.
See The $filter query parameter.

Example:

https://resourcecollection?$filter=SystemType eq 'Physical’

Applies to resource collections. If the target resource collection contains exactly one member, clients can use this query
parameter to return that member's resource.

If the collection contains either zero members or more than one member, the response returns the resource collection,
as expected.

Services should return the HTTP 460 Bad Request with the QueryCombinationInvalid message from the Base Message
Registry if only is being combined with other query parameters.

Example:

https://resourcecollection?only

42

Published Version 1.12.1



DSP0266 Redfish Specification

Query parameter Description and example

Returns a subset of the resource's properties that match the $select expression.

See The $select query parameter.
$select=<string>

Example:
https://resource?$select=SystemType,Status

Applies to resource collections. Returns a subset of the members in a resource collection, or an empty set of members if
the $skip value is greater than or equal to the member count. This paging query parameter defines the number of
members in the resource collection to skip.

$skip=<integer>

Example:

https://resourcecollection?$skip=5

Applies to resource collections. Defines the number of members to show in the response.

Minimum value is e, though a value of @ returns an empty set of members.
$top=<integer>

Example:

https://resourcecollection?$top=30

: Table 8 — Query parameters

9.3.2 The $expand query parameter

The $expand query parameter enables a client to request a response that includes not only the requested resource,
but also includes the contents of the subordinate or hyperlinked resources. The definition of this query parameter
follows the OData Protocol Specification.

The $expand query parameter has a set of possible options that determine which hyperlinks in a resource are
included in the expanded response. Some resources may already be expanded due to the resource's schema
annotation AutoExpand , such as the Temperature objectin the Thermal resource.

Table 9 describes the Redfish-supported options for the $expand query parameter. The service may implement some
of these options but not others. Any other supported syntax for $expand is outside the scope of this specification.

Option Description Example

Shall expand all hyperlinks, including those in payload annotations, such
asterisk ( * ) as @Redfish.Settings , @Redfish.ActionInfo , and https://resource?$expand=*
@Redfish.CollectionCapabilities .

Version 1.12.1 Published 43



Redfish Specification DSP0266

Option Description Example

Number of levels the service should cascade the $expand operation.

The default level shall be 1.
$levels https://resourcecollection?$expand=. ($levels=2)
For example, $levels=2 expands both the hyperlinks in the current
resource (level 1), and the hyperlinks in the resulting expanded resources
(level 2).

Shall expand all hyperlinks not in any links property instances of the
resource, including those in payload annotations, such as

. . . 3 https://resourcecollection?$expand=.
@Redfish.Settings , @Redfish.ActionInfo , and

period ( . )

@Redfish.CollectionCapabilities .

tilde (~) Shall expand all hyperlinks found in all links property instances of the

https://resourcecollection?$expand=~
resource.

: Table 9 — The $expand query parameter options
Examples of $expand usage include:
e GET of a SoftwareInventoryCollection .

With $expand , the client can request multiple SoftwareInventory collection member resources in one request
rather than fetching them one at a time.

e GET ofa ComputerSystem .

With $levels, asingle GET request can include the subordinate resource collections, such as Processors and

Memory .
e GET all UUIDs in members of the cComputersystem collection.
To accomplish this result, include both $select and $expand on the URI.
The syntax is GET /redfish/v1/Systems?$select=UUID&$expand=.($levels=1)
When services execute $expand , they may omit some of the referenced resource's properties.

When clients use $expand , they should be aware that the payload may increase beyond what can be sent in a single
response.

If a service cannot return the payload due to its size, it shall return the HTTP 507 Insufficient Storage status code.

If a service cannot return the payload corresponding to an individual member of a resource collection, it should

44 Published Version 1.12.1



DSP0266 Redfish Specification

return the @odata.id property for that member and should return extended information indicating the reason that
member was not returned, such as when a provider internal to the service returns an error or times out.

The following example expands the RoleCollection resource with the level set to 1:

{
"@odata.id": "/redfish/v1/AccountService/Roles",
"@odata.type": "#RoleCollection.RoleCollection",
"Name": "Roles Collection",
"Members@odata.count": 3,
"Members": [{
"@odata.id": "/redfish/vl/AccountService/Roles/Administrator”,
"@odata.type": "#Role.vl_1_0.Role",
"Id": "Administrator",
"Name": "User Role",
"Description”: "Admin User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureManager",
"ConfigureUsers", "ConfigureSelf", "ConfigureComponents"]
b A
"@odata.id": "/redfish/v1l/AccountService/Roles/Operator",
"@odata.type": "#Role.vl_1_0.Role",
"Id": "Operator",
"Name": "User Role",
"Description": "Operator User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf",
"ConfigureComponents"]
b A
"@odata.id": "/redfish/v1l/AccountService/Roles/ReadOnly",
"@odata.type": "#Role.vl_1_0.Role",
"Id": "ReadOnly",
"Name": "User Role",
"Description”: "ReadOnly User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf"]
]
}

9.3.3 The $select query parameter

The $select query parameter indicates that the implementation should return a subset of the resource's properties
that match the $select expression. If a request omits the $select query parameter, the response returns all
properties by default. The definition of this query parameter follows the OData Protocol Specification.

The $select expression shall not affect the resource itself.

The $select expression defines a comma-separated list of properties to return in the response body.

Version 1.12.1 Published 45



Redfish Specification DSP0266

The syntax for properties in objects or properties in arrays of objects shall be the object and property names
concatenated with a slash ( /).

An example of $select usage is:

GET /redfish/v1/Systems/1?$select=Name,SystemType,Status/State

When services execute $select , they shall return all requested properties of the referenced resource. If a requested
property is an object, the service shall return the entire object. The @odata.id and @odata.type properties shall be
in the response payload and contain the same values as if $select was omitted. If the @odata.context property is
supported, it shall be in the response payload and should be in the context property recommended format. If the
@odata.etag property is supported, it shall be in the response payload and contain the same values as if $select
was omitted.

Any other supported syntax for $select is outside the scope of this specification.

9.3.4 The $filter query parameter

The $filter parameter enables a client to request a subset of the resource collection's members based on the

$filter expression. The definition of this query parameter follows the OData Protocol Specification.
The $filter query parameter defines a set of properties and literals with an operator.
A literal value can be:

« Astring enclosed in single quotes.
* A number.

» A boolean value.

If the literal value does not match the data type for the specified property, the service should reject $filter requests
with the HTTP 400 Bad Request status code.

The $filter section of the OData ABNF Components Specification contains the grammar for the allowable syntax of

the $filter query parameter, with the additional restriction that only built-in filter operations are supported.

Table 10 lists the Redfish-supported values for the $filter query parameter. Any other supported syntax for
$filter is outside the scope of this specification.

Value Description Example

. (Status/State eq 'Enabled' and Status/Health eq 'OK') or SystemType eq
0O Precedence grouping operator.
‘Physical’

46 Published Version 1.12.1



DSP0266 Redfish Specification
Value Description Example

and Logical and operator. ProcessorSummary/Count eq 2 and MemorySummary/TotalSystemMemoryGiB gt 64

eq Equal comparison operator. ProcessorSummary/Count eq 2

ge

gt

le

1t

ne

not

or

Greater than or equal to comparison
ProcessorSummary/Count ge 2

operator.

Great than comparison operator. ProcessorSummary/Count gt 2

Less than or equal to comparison operator. MemorySummary/TotalSystemMemoryGiB le 64

Less than comparison operator. MemorySummary/TotalSystemMemoryGiB 1t 64

Not equal comparison operator. SystemType ne 'Physical’

Logical negation operator. not (ProcessorSummary/Count eq 2)

Logical or operator. ProcessorSummary/Count eq 2 or ProcessorSummary/Count eq 4

: Table 10 — The $filter query parameter options

When evaluating expressions, services shall use the following operator precedence:

Grouping

Logical negation

Relational comparison. gt , ge, 1t,and 1le all have equal precedence.
Equality comparison. eq and ne both have equal precedence.

Logical and

Logical or

If the service receives an unsupported $filter query parameter, it shall reject the request and return the HTTP se1

Not Implemented status code.

9.4 HEAD

The

HEAD method differs from the GET method in that it shall not return message body information.

However, the HEAD method completes the same authorization checks and returns all the same meta information and

status codes in the HTTP headers as a GET method.

Services may support the HEAD method to:

Return meta information in the form of HTTP response headers.

Version 1.12.1 Published

47



Redfish Specification DSP0266

« Verify hyperlink validity.
Services may support the HEAD method to verify resource accessibility.
Services shall not support any other use of the HEAD method.
The HEAD method shall be idempotent in the absence of outside changes to the resource.

Services shall reject HEAD requests that contain query parameters. Services should return the HTTP 400 Bad Request
status code if provided with a query parameter in a HEAD request.

9.5 Data modification requests

9.5.1 Data modification requests overview
To create, modify, and delete resources, clients issue the following operations:

» POST (create)
« PATCH (update)
« PUT (replace)
« DELETE (delete)

« POST (action) on the resource

The following clauses describe the success and error response requirements common to all data modification
requests.

9.5.2 Modification success responses

For create operations, the response from the service, after the create request succeeds, should be one of these
responses:

¢ The HTTP 201 created status code with a body that contains the JSON representation of the newly created
resource after the request has been applied.
* The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the
processing of the request requires additional time to be completed.
o After processing of the task is complete, the created resource may be returned in response to a request to
the task monitor URI with the HTTP 201 created status code.
« The HTTP 204 No Content status code with empty payload in the event that the service cannot return a

representation of the created resource.

48 Published Version 1.12.1



DSP0266 Redfish Specification

For update, replace, and delete operations, the response from the service, after successful modification, should be
one of the following responses:

« The HTTP 200 ok status code with a body that contains the JSON representation of the targeted resource after
the modification has been applied, or, for the delete operation, a representation of the deleted resource.
e The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the

processing of the modification requires additional time.
o After processing of the task is complete, the modified resource may be returned in response to a request to
the task monitor URI with the HTTP 200 ok status code.

« The HTTP 204 No Content status code with an empty payload in the event that service cannot return a
representation of the modified or deleted resource.

For details on successful responses to action requests, see POST (action).

9.5.3 Modification error responses

If the resource exists but does not support the requested operation, services shall return the HTTP 405 Method Not

Allowed status code.

Otherwise, if the service returns a client 4xx or service 5xx status code, the service encountered an error and the

resource shall not have been modified or created as a result of the operation.

9.6 PATCH (update)

To update a resource's properties, the service shall support the PATCH method.

The request body defines the changes to make to one or more properties in the resource that the request URI
references. The PATCH request does not change any properties that are not in the request body. The service shall
ignore OData annotations in the request body, such as resource identifier, type, and ETag properties. Services may
accept a PATCH method with an empty JSON object, which indicates that the service should make no changes to the

resource.

For resources that allow for properties to not be updated immediately, clients can perform PATCH requests to a
designated settings resource. For more information, see the Settings resource clause.

See the Modification success responses clause for behavior when the PATCH operation is successful.

If supported by the service, clients can perform a conditional PATCH operation by specifying an If-Match or If-
None-Match request header that contains the ETag of the resource.

The implementation may reject the update on certain properties based on its own policies and, in this case, not make
the requested update.

Version 1.12.1 Published 49



Redfish Specification DSP0266

A partial success of a PATCH operation occurs when a modification request for multiple properties results in at least
one property updated successfully, but one or more properties could not be updated. In these cases, the service shall
return the HTTP 200 ok status code and a resource representation with extended information that lists the
properties that could not be updated. Examples include:

« A property is read-only, unknown, or unsupported.

» A service-side error occured, such as a write failure for an EEPROM.

If all properties in the update request are read-only, unknown, or unsupported, but the resource can be updated, the
service shall return the HTTP 400 Bad Request status code and an error response with messages that show the non-
updatable properties.

If the update request only contains OData annotations, such as resource identifier, type, and ETag properties, the
service should return the HTTP 400 Bad Request status code with the Nooperation message from the Base Message
Registry.

In the absence of outside changes to the resource, the PATCH operation should be idempotent, although the original
ETag value may no longer match.

9.7 PATCH on array properties

The Array properties clause describes the three styles of array properties in a resource.

Within a PATCH request, the service shall accept null to remove an element, and accept an empty object {} to
leave an element unchanged. Array properties that use the fixed or variable length style remove those elements,
while array properties that use the rigid style replace removed elements with null elements. A service may indicate
the maximum size of an array by padding null elements at the end of the array sequence.

When processing a PATCH request, the order of operations shall be:

« Modifications
« Deletions
» Additions

A PATCH request with fewer elements than in the current array shall remove the remaining elements of the array.

For example, a fixed length-style Flavors array indicates that the service supports a maximum of six elements, by
padding the array with null elements, with four populated.

"Flavors": ["Chocolate", "Vanilla", "Mango", "Strawberry", null, null]

50 Published Version 1.12.1



DSP0266 Redfish Specification

A client could issue the following PATCH request to remove vanilla, replace Strawberry with cherry , and add
Coffee and Banana to the array, while leaving the other elements unchanged.

"Flavors": [{}, null, {}, "Cherry", "Coffee", "Banana"]

After the PATCH operation, the resulting array is:

"Flavors": ["Chocolate", "Mango", "Cherry", "Coffee", "Banana", null]

9.8 PUT (replace)

To completely replace a resource, services may support the puT method. The service may add properties to the
response resource that the client omits from the request body, the resource definition requires, or the service
normally supplies.

The pPuT operation should be idempotent in the absence of outside changes to the resource, with the possible
exception that the operation might change ETag values.

See the Modification success responses clause for behavior when the puT operation is successful.

If supported by the service, clients can perform a conditional puT operation by specifying an If-Match or If-None-

Match request header that contains the ETag of the resource.

Services may reject requests that do not include properties that the resource definition (schema) requires.

9.9 POST (create)

To create a resource, services shall support the PosT method on resource collections.

The PosT request is submitted to the resource collection to which the new resource will belong. See the Modification

success responses clause for behavior when the posT operation is successful.

The body of the create request contains a representation of the object to create. The service may ignore any service-
controlled properties, such as 1d, which would force the service to overwrite those properties. Additionally, the

service shall set the Location header in the response to the URI of the new resource.

Version 1.12.1 Published 51



Redfish Specification DSP0266

« Submitting a POST request to a resource collection is equivalent to submitting the same request to the Members
property of that resource collection. Services that support the addition of Members to a resource collection shall
support both forms.

> For example, if a client adds a member to the resource collection at /redfish/vi/EventService/
Subscriptions , it can perform a POST request to either /redfish/vi/EventService/Subscriptions oOr
/redfish/v1/EventService/Subscriptions/Members .

e The PoST operation shall not be idempotent.

 Services may allow the inclusion of @Redfish.OperationApplyTime property in the request body. See Operation
apply time.

+ Services should return the HTTP 400 Bad Request status code for requests containing properties with the value

null .

9.10 DELETE (delete)

To remove a resource, the service shall support the DELETE method. Resources subordinate to the resource removed
by a DELETE method are typically removed, as the contents of subordinate resources are dependent on the parent
resource. In some cases, related resources may also be relocated in the resource tree based on their definition and
usage. Other resources in the resource tree may also be removed or incur side effects of a resource removal.

See the Modification success responses clause for behavior when the DELETE operation is successful.

« If the resource was already deleted, the service may return the HTTP 404 Not Found status code or a success

code.
« The service may allow the inclusion of the @Redfish.OperationApplyTime property in the request body. See
Operation apply time.

9.11 POST (action)

Services shall support the posT method as a way for clients to send actions to resources.

« The pPosT operation may not be idempotent.

« Services may allow the inclusion of the @Redfish.OperationApplyTime property in the request body. See

Operation apply time.

To request actions on a resource, send the HTTP posT method to the URI of the action. The target property in the
resource's Actions property shall contain the URI of the action. The URI of the action shall be in the format:

<ResourceUri>/Actions/<QualifiedActionName>

where

52 Published Version 1.12.1



DSP0266 Redfish Specification

e <ResourceUri> is the URI of the resource that supports the action.
¢ Actions is the name of the property that contains the actions for a resource, as defined by this specification.

e <QualifiedActionName> is the qualified name of the action. Includes the resource type.

To determine the available actions and the valid parameter values for those actions, clients can query a resource
directly.

Clients provide parameters for the action as a JSON object within the request body of the posT operation. For
information about the structure of the request and required parameters, see the Actions property clause. Some
parameter information may require that the client examine the Redfish schema that corresponds to the resource.

If the action request does not contain all required parameters, the service shall return the HTTP 400 Bad Request
status code. If the action request contains unsupported parameters, the service shall ignore the unsupported
parameters or return the HTTP 400 Bad Request status code. If an action does not have any required parameters, the
service should accept an empty JSON object in the HTTP body for the action request.

Table 11 describes the HTTP status codes and additional information that the service shall return a response to a
successful PosT (action) request:

HTTP
To indicate status  Additional information

code
Success, and the An error response, with a message that indicates success or any additional relevant messages. If the
schema does not - action was successfully processed and completed without errors, warnings, or other notifications for the
contain a response client, the service should return the Success message from the Base Message Registry in the code
definition. property in the response body.

Success, and the

schema contains a

o 200 0K  The response body conforms to the action response defined in the schema.
response definition for

the action.

A new resource was

A Location response header set to the URI of the created resource. An error response, with a message
created, and the

201 that indicates success or any additional relevant messages. If the action was successfully processed and
schema does not

) Created completed without errors, warnings, or other notifications for the client, the service should return the
contain a response

definiti Success message from the Base Message Registry in the code property in the response body.
efinition.

A new resource was

created, and the
. 201 A Location response header set to the URI of the created resource. The response body conforms to the
schema contains a . . )
. Created action response defined in the schema.
response definition for

the action.

Additional time is 202

. A Location response header set to the URI of a task monitor.
required to process.  Accepted

Version 1.12.1 Published 53



Redfish Specification DSP0266

HTTP
To indicate status  Additional information
code
Success, and the
schema does not 204 No
. No response body.
contain a response Content

definition.

: Table 11 — POST (action) status codes

If an action requested by the client has no effect, such as a reset of a ComputerSystem where the ResetType
parameter is set to on and the ComputerSystem is already on , the service should respond with the HTTP 200 ok
status code and return the Nooperation message from the Base Message Registry.

If an error was detected and the action request was not processed, the service shall return an HTTP 4xx or HTTP

sxx status code. The response body, if provided, shall contain an error response that describes the error or errors.

Example successful action response:

{
"error": {
"code": "Base.l1.8.Success",
"message”: "Successfully Completed Request”,
"@Message.ExtendedInfo": [{
"@odata.type": "#Message.vl_1_1.Message",
"MessageId": "Base.l.8.Success",
"Message": "Successfully Completed Request",
"Severity": "OK",
"MessageSeverity": "OK",
"Resolution”: "None"
]
}
}

9.12 Operation apply time

Services may accept the @Redfish.OperationApplyTime annotation in the POST (create), DELETE (delete), or POST
(action) request body. This annotation enables the client to control when an operation is carried out.

For example, if the client wants to delete a particular volume resource, but can only safely do so when a reset occurs,
the client can use this annotation to instruct the service to delete the volume on the next reset.

If multiple operations are pending, the service shall process them in the order in which the service receives them.

54 Published Version 1.12.1



DSP0266 Redfish Specification

Services that support the @Redfish.OperationApplyTime annotation for create operations on a resource collection and
delete operations on members of a resource collection shall include the @Redfish.OperationApplyTimeSupport
response annotation for the resource collection.

The following example response for a resource collection supports the @Redfish.OperationApplyTime annotation in
requests to create new members and delete existing members:

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes",
"@odata.type": "#VolumeCollection.VolumeCollection",
"Name": "Storage Volume Collection",
"Description”: "Storage Volume Collection",
"Members@odata.count": 2,
"Members": [{
"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/1"
b A
"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2"

I
"@Redfish.OperationApplyTimeSupport”: {

"@odata.type": "#Settings.vl_2_0.OperationApplyTimeSupport",
"Supportedvalues": ["Immediate", "OnReset"]

In the previous example, a client can annotate their create request body on the volumeCollection itself, or a delete
operation on the volumes within the VolumeCollection .

The following sample request deletes a volume on the next reset:

DELETE /redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2 HTTP/1.1
Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

"@Redfish.OperationApplyTime": "OnReset"

Services that support the @Redfish.OperationApplyTime annotation for an action shall include the
@Redfish.OperationApplyTimeSupport response annotation for the action.

The following example response for a ComputerSystem resource supports the @Redfish.OperationApplyTime
annotation in the reset action request:

Version 1.12.1 Published 55



Redfish Specification DSP0266

"@odata.id": "/redfish/v1/Systems/1",
"@odata.type": "#ComputerSystem.vl_5_@.ComputerSystem",
"Actions": {
"#ComputerSystem.Reset": {
"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",
"ResetType@Redfish.AllowableValues": ["On", "ForceOff", "ForceRestart",
"Nmi", "ForceOn", "PushPowerButton"],
"@Redfish.OperationApplyTimeSupport™: {
"@odata.type": "#Settings.vl_2_0.0OperationApplyTimeSupport",
"SupportedvValues": ["Immediate", "AtMaintenanceWindowStart"],
"MaintenanceWindowStartTime": "2017-05-03723:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600,
"MaintenanceWindowResource": {
"@odata.id": "/redfish/v1/Systems/1"

3

In the previous example, a client can annotate their reset action request body on the ComputerSystem in the payload.

The following sample request completes a reset at the start of the next maintenance window:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1
Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

"ResetType": "ForceRestart",
"@Redfish.OperationApplyTime": "AtMaintenanceWindowStart"

Services that support the @Redfish.OperationApplyTime annotation for a resource collection or action shall create a
task, and respond with the HTTP 202 Accepted status code with a Location header set to the URI of a task monitor,
if the client's request body contains @Redfish.OperationApplyTime in the request.

The settings Redfish schema defines the structure of the @Redfish.OperationApplyTimeSupport object and the
@Redfish.OperationApplyTime annotation value

56 Published Version 1.12.1



DSP0266 Redfish Specification

9.13 Deep operations

Implementations may support operations that modify the current resource as well as subordinate resources. These

operations are known as deep operations. They give the client the ability to modify more than one resource with a
single operation.

Table 12 describes the types of deep operations that this specification defines:

Operation Description Example

Deep PATCH Modify a resource and one or more Modify a ComputerSystem resource as well as subordinate Storage and
(update) subordinate resources. NetworkInterface resources.

Deep PoST Create multiple resources in a resource

( ) llecti Create ManagerAccount resources.
create collection.

: Table 12 — Deep operations

« Services that support deep PATCH for updating resources shall set the value of the DeepPATCH property in the
DeepOperations property in the ProtocolFeaturesSupported property within the service root to true .

« Services that support deep posT for creating resources shall set the value of the DeepP0ST property in the
DeepOperations property in the ProtocolFeaturesSupported property within the service root to true .
« The Members property in resource collections shall not be removed when using a deep PATCH .

« Action URIs shall not support deep PosT operations.

« If the service supports deep operations, the MaxLevels property in the DeepOperations property in the

ProtocolFeaturesSupported property in the service root shall indicate the maximum number of levels that the
service supports for deep operations.

« To request deep operations on a resource, send the HTTP method to the deep operation URI of the resource. The
URI for deep operations on any resource shall be in the format: <Resourceuri>.Deep .

« The schema used for validating the root level of the request body shall be the schema of the resource in the
resource URI.

o The subordinate resources included in the request body shall be validated against their corresponding
schema.

The body of deep operations contains the resource being modified as well as the subordinate resources being
modified. This resource can be a collection or a single instance. These resources could be subordinate resources,
subordinate resource collections, or subordinate members of resource collections. The client can omit properties
from the request such as those it does not want to modify or that the service controls. Requests that include

references to multiple instances, such as members of a collection, shall include the Members property as part of the
request body.

Version 1.12.1 Published 57



Redfish Specification DSP0266

To determine which members of subordinate resource collections are to be modified by a deep PATCH , services shall
use the @odata.id property provided by the client to identify the member of the resource collection to be modified.

Clients may provide the @odata.etag property in subordinate resources being modified by a deep PATCH . If the
request contains the If-Match or If-None-Match header, the service shall compare the ETag in the request header
with the ETag of the resource specified by the URL. If this check passes, the operation can proceed using the
@odata.etag values contained in the body of the subordinate resources. In this case, the operation on each
subordinate resource shall be completed independently, where some subordinate values that pass the condition
check proceed and the resources that fail do not proceed. In this case, annotated extended information shall be
included in the subordinate resource representation of the response.

Failure semantics for deep operations are similar to that of other operations of similar type. If any properties in a
deep PATCH operation succeeded, the resultis a 200 ok with the results returned in the response, and the service
should include extended information indicating warnings or errors. For a deep PosT operation, if any member of the
collection was created then a 201 created shall be returned, and any members that were not created should have
extended information in their place holders with sufficient identifying information, such as returning all of the
properties provided in the PosT request body for that member, as well as extended information indicating why the
creation was not successful. When sending a deep PosT request, the value of the Location header shall be that of
one of the URIs created and should be that of one of the least subordinate URIs, such as that of a ComputerSystem
resource and not one of the devices subordinate to the computersystem resource.

Deep PosT shall not be allowed on the sessionCollection resource.

The following deep PATCH example modifies two members of the RoleCollection resource:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

OData-Version: 4.0

{
"Members": [{
"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted"”,
"AssignedPrivileges": ["Login", "ConfigureComponents"]
b A
"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted"”,
"AssignedPrivileges": ["Login"]
1]
}

The following deep PosT example creates two members in the RoleCollection resource:

POST /redfish/v1l/AccountService/Roles.Deep HTTP/1.1

58 Published Version 1.12.1



DSP0266 Redfish Specification

Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"Members": [{
"RoleId": "OperatorRestricted",
"AssignedPrivileges": ["Login", "ConfigureComponents"]
b A
"RoleId": "ReadOnlyRestricted",
"AssignedPrivileges": ["Login"]
]
}

The following deep PATCH example modifies the asset tag and BIOS settings of a ComputerSystem resource:

PATCH /redfish/v1/Systems/47832.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

"AssetTag": "Inventory Tag 12394783431",
"Bios": {
"@odata.id": "/redfish/v1/Systems/47832/Bios",
"@Redfish.Settings": {
"SettingsObject": {
"@odata.id": "/redfish/v1/Systems/47832/Bios/SD",
"Attributes": {
"AdminPhone": "(123) 456-789",
"BootMode": "Uefi"

The following example shows a deep PATCH with ETags in the request:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

If-Match: <Collection ETag>

OData-Version: 4.0

Version 1.12.1 Published 59



Redfish Specification DSP0266

"Members": [{
"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted"”,
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login", "ConfigureComponents"]

b A
"@odata.id": "/redfish/v1l/AccountService/Roles/ReadOnlyRestricted”,
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login"]

The following example response shows a partial failure of a deep PATCH where the ETag provided in the request for

the Role resource named ReadOnlyRestricted was incorrect:

HTTP/1.1 200 OK

Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

ETag: <Resource collection ETag>
OData-Version: 4.0

"Members": [{
"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted"”,
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login", "ConfigureComponents"]
b A
"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted"”,
"@Message.ExtendedInfo": [{
"@odata.type": "#Message.vl_1_1.Message",
"MessageId": "Base.l.8.PreconditionFailed",
"RelatedProperties": ["#/AssignedPrivileges"]

3]

60 Published Version 1.12.1



DSP0266 Redfish Specification

10 Service responses

This clause describes the responses that Redfish services can return to clients.

10.1 Response headers

HTTP defines headers for use in response messages. Table 13 defines those headers and their requirements for
Redfish services:

« Redfish services shall return the HTTP 1.7 Specification-defined headers if the Required column contains Yes.
« Redfish services should return the HTTP 1.7 Specification-defined headers if the Required column contains No.

« Redfish clients shall be able to both understand and process all the HTTP 1.7 Specification-defined headers.

Supported

Header Required Description
values
Fetch Living
Access-
Standard, S .
Control- Yes 323 HTTP Prevents or allows requests based on originating domain. Prevents CSRF attacks.
Allow-Origin o
responses
POST , PUT, . - .
PATCH Shall be returned with the HTTP 405 (Method Not Allowed) status code to indicate the valid
Allow Yes ' methods for the request URI. Shall be returned with any GET or HEAD operation to indicate the
DELETE , . .
other allowable operations for this resource.
GET , HEAD
Cache- Lo
A Yes RFC7234 Shall be supported and indicates whether a response can or cannot be cached.
ontro
Content- .
No RFC7231 Encoding used to compress the message body.
Encoding
Size of the message body. An optional means of indicating size of the body uses Transfer-
Content- N RFCT231 Encoding: chunked , that does not use the cContent-Length header. If a service does not support
o
Length Transfer-Encoding and needs Content-Length instead, the service shall respond with the HTTP

411 Length Required status code.

Version 1.12.1 Published 61


https://fetch.spec.whatwg.org/#http-responses
https://fetch.spec.whatwg.org/#http-responses

Redfish Specification DSP0266

Supported

Header Required Description
values

The message body's representation type.
Services shall specify a Content-Type of application/json when returning resources as JSON.
Services shall specify a Content-Type of application/xml when returning metadata as XML.

Content- . .

Yes RFC7231 Services shall specify a content-Type of application/yaml or application/vnd.oai.openapi

Type .

P when returning OpenAPI schema as YAML.
Services shall specify a Content-Type of text/event-stream when returning an SSE stream.
;charset=utf-8 shall be appended to the content-Type if specified in the chosen media-type in
the Accept header for the request.

» An identifier for a specific version of a resource, often a message digest. The ETag header shall be

ETag Conditional RFC7232 .
included on responses to GET s of ManagerAccount resources.

Link Yes RFC8288 Link headers shall be returned, as described in the Link headers clause.

» URI of a newly created resource. Shall be returned upon creation of a resource. Location and x-
Location Conditional RFC7231 ) .
Auth-Token shall be included on responses that create user sessions.

Max-
g No RFC7231 Limits gateway and proxy hops. Prevents messages from remaining in the network indefinitely.
Forwards
OData- ) .
. Yes 4.0 OData version of the payload to which the response conforms.
Version
RFC7231, . . . . . .
Retry-After No . Informs a client how long to wait before requesting the task information again.
Section 7.1.3
A product token and its version. Multiple product tokens may be listed.
Server No RFC7231
Note: Previous versions of the Specification marked this header as required. This has been
changed as no use cases for requiring it have been identified.
Defines the network hierarchy and recognizes message loops. Each pass inserts its own via
Via No RFC7230
header.
WW - Required for Basic and other optional authentication mechanisms. For details, see the Security
Yes RFC7617 .
Authenticate details clause.
Opaque . - . e
X-Auth- Contains the authentication token for user sessions. The token value shall be indistinguishable
Yes encoded
Token from random.

octet strings

: Table 13 — Response headers

62 Published Version 1.12.1



DSP0266 Redfish Specification

10.2 Link header

The Link header provides metadata information on the accessed resource in response to a HEAD or GET request.

The metadata information can include hyperlinks from the resource and JSON Schemas that describe the resource.

The following example shows the Link headers for a ManagerAccount with an Administrator role, in addition to a
Settings annotation:

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role
Link: <http://redfish.dmtf.org/schemas/Settings.json>
Link: </redfish/v1/JsonSchemas/ManagerAccount.vl_0_2.json>; rel=describedby

« Thefirst Link header is an example of a hyperlink that comes from the resource. It describes hyperlinks within
the resource. This type of header is outside the scope of this specification.

« Thesecond Link headeris an example of an annotation Link header as it references the JSON Schema that
describes the annotation and does not have rel=describedby . This example references the public copy of the
annotation on the DMTF's Redfish schema repository.

« The third Link header is an example for the JSON Schema that describes the actual resource.

> Note that the URL can reference an unversioned JSON Schema because the @odata.type in the resource
indicates the appropriate version, or reference the versioned JSON Schema, which according to previous
normative statements need to match the version in the @odata.type property of the resource.

A Link header containing rel=describedby shall be returned on GeT and HEAD requests. If the referenced JSON
Schema is a versioned schema, it shall match the version contained in the value of the @odata.type property
returned in this resource.

A Link header satisfying annotations should be returned on GeT and HEAD requests.

10.3 Status codes

HTTP defines status codes that appear in responses. The status codes themselves provide general information about
how the request was processed, such as whether the request was successful, if the client provided bad information, or
the service encountered an error when processing the request.

« When the service returns a status code in the 4xx or 5xx range, services should return an extended error
response in the response body to provide the client more meaningful and deterministic error semantics.

« When the service returns a status code in the 2xx range and the response contains a representation of a
resource, services may use extended information to convey additional information about the resource.

- Extended error messages shall not provide privileged information when authentication failures occur.

Version 1.12.1 Published 63



Redfish Specification DSP0266

Note: For security implications of extended errors, See Security details.

Table 14 lists HTTP status codes that have meaning or usage defined for a Redfish service, or are otherwise referenced
by this specification. Other codes may be returned by the service as appropriate, and their usage is implementation-
specific. For usage and additional requirements imposed by this specification, see the Description column.

 Clients shall understand and be able to process the status codes in Table 14 as defined by the HTTP 1.1
Specification and constrained by additional requirements defined by this specification.

« Services shall respond with the status codes in Table 14 as defined in Description column.

« Redfish services should not return the HTTP 1ee status code. Using the HTTP protocol for a multipass data
transfer should be avoided, except for the upload of extremely large data.

 If no other status code in the 4xx range is appropriate for client-side errors, the default status code should be
the HTTP 400 Bad Request status code.

 If no other status code in the sxx range is appropriate for service-side errors, the default status code should be
the HTTP 500 Internal Server Error status code.

HTTP status ..
Description
code
200 OK Request completed successfully and includes a representation in its body.

Request to create a resource completed successfully. The Location header shall be set to the canonical URI for the newly
201 Created created resource. For posT (create) requests, the response body may include a representation of the newly created resource.
For posT (action) requests, the response body shall include the action response.

Request has been accepted for processing but the processing has not been completed. The Location header shall be set to

202
N the URI of a task monitor that can later be queried to determine the status of the operation. The response body may include
ccepte .
P a representation of the Task resource.

204 No X i X
e Request succeeded, but no content is being returned in the body of the response.

onten

301 Moved . .

Requested resource resides under a different URI.

Permanently

302 Found Requested resource resides temporarily under a different URI.

Service has made a conditional GET request where access is allowed but the resource content has not changed. Either or

304 Not
E— both the 1f-Modified-Since and If-None-Match headers initiate conditional requests to save network bandwidth if no
joditlel
change has occurred. See HTTP 1.1, sections 14.25 and 14.26.
400 Bad Request could not be processed because it contains invalid information, such as an invalid input field, or is missing a required
Request value. The response body shall return an extended error as defined in the Error responses clause.
401 _— S . . - L
Authentication credentials included with this request are missing or invalid.
Unauthorized

64 Published Version 1.12.1



DSP0266 Redfish Specification

HTTP status L.
Description
code
o Service recognized the credentials in the request but those credentials do not possess authorization to complete this request.
SRS This code is also returned when the user credentials provided need to be changed before access to the service can be
orbliaden
granted. For details, see the Security details clause.
404 Not i .
e Request specified a URI of a resource that does not exist.
oun
o HTTP verb in the request, such as DELETE, GET, HEAD , POST, PUT, Or PATCH, is not supported for this request URI. The
405 Metho

p— response shall include an Allow header that provides a list of methods that the resource identified by the URI in the client
(o) owe
request supports.

406 Not Accept header was specified in the request and the resource identified by this request cannot generate a representation
Acceptable  that corresponds to one of the media types in the Accept header.

Creation or update request could not be completed because it would cause a conflict in the current state of the resources

409
- that the platform supports. For example, a conflict occurred due to an attempt to set multiple properties that work in a linked
onTlic
manner by using incompatible values.
Requested resource is no longer available at the service and no forwarding address is known. This condition is expected to
"o G be considered permanent. Clients with hyperlink editing capabilities should delete references to the URI in the client request
one

after user approval. If the service does not know or cannot determine whether the condition is permanent, client should use
the HTTP 404 Not Found status code. This response is cacheable unless otherwise indicated.

411 Length  Request did not use the content-Length header to specify the length of its content but perhaps used the Transfer-
Required Encoding: chunked header instead. The addressed resource requires the Content-Length header.

412
Precondition Precondition check, such as check of the opata-version, If-Match,or If-Not-Modified header, failed.
Failed

415
Unsupported  Request specifies a Content-Type for the body that is not supported.
Media Type

428
Precondition Request did not provide the required precondition, such as an If-Match or If-None-Match header.

Required

431 Request L . . B o . -
e — Service is unwilling to process the request because either an individual header field or the collection of all header fields are
eader rle
too large.
Too Large

500 Internal Service encountered an unexpected condition that prevented it from fulfilling the request. The response body shall return an
server Error extended error as defined in the Error responses clause.

501 Not Service does not currently support the functionality required to fulfill the request. This response is appropriate when the
Implemented service does not recognize the request method and cannot support the method for any resource.

Version 1.12.1 Published 65



Redfish Specification DSP0266

HTTP status

Description
code =

Service currently cannot handle the request due to temporary overloading or maintenance of the service. A service may use
503 Service this response to indicate that the request URI is valid but the service is performing initialization or other maintenance on the
Unavailable resource. A service may also use this response to indicate that the service itself is undergoing maintenance, such as finishing
initialization steps after reboot of the service.

507
Insufficient Service cannot build the response for the client due to the size of the response.

Storage

: Table 14 — HTTP status codes

10.4 OData metadata responses

10.4.1 OData metadata responses overview

OData metadata describes resources, resource collections, capabilities, and service-dependent behavior to generic
OData consumers with no specific understanding of this specification. Clients are not required to request metadata if
they already have sufficient understanding of the target service. For example, clients are not required to request
metadata to request and interpret a JSON representation of a resource that this specification defines.

A client can access the OData metadata at the /redfish/vi/$metadata URI.

A client can access the OData service document at the /redfish/vi/odata URI.

10.4.2 OData $metadata

The OData metadata describes top-level service resources and resource types according to OData Common Schema
Definition Language. The OData metadata is represented as an XML document with an Edmx root element in the
http://docs.oasis-open.org/odata/ns/ednx hamespace with an OData version attribute setto 4.0 .

The service shall use the application/xml or application/xml;charset=utf-8 MIME types to return the OData

metadata document as an XML document.

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
<!-- edmx:Reference and edmx:Schema elements go here -->

</edmx:Edmx>

66 Published Version 1.12.1



DSP0266 Redfish Specification

10.4.2.1 Referencing other schemas

The OData metadata should include the namespaces for each of the Redfish resource types, along with the
RedfishExtensions.vi_@_8 namespace. Dynamic clients that reference the OData metadata document leverage
schema definitions that are referenced to understand the definitions of the resources in the service. However, there
are cases where it might not be practical to maintain an accurate document, such as when resources are dynamically
discovered by the service through devices that support Redfish Device Enablement.

These references may use either:

» The standard URI for the published Redfish schema definitions, such as on http://redfish.dmtf.org/schemas .

« A URI to a local version of the Redfish schema.

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1l/ServiceRoot_v1.xml">
<edmx:Include Namespace="ServiceRoot"/>
<edmx:Include Namespace="ServiceRoot.vl_©_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1l/VirtualMedia_v1.xml">
<edmx:Include Namespace="VirtualMedia"/>
<edmx:Include Namespace="VirtualMedia.vl_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1l/RedfishExtensions_v1.xml">
<edmx:Include Namespace="RedfishExtensions.vl_©_0" Alias="Redfish"/>

</edmx:Reference>

The service's OData metadata document shall include an EntityContainer that defines the top-level resources and
resource collections.

10.4.2.2 Referencing OEM extensions

The OData metadata document may reference additional schema documents that describe OEM-specific extensions
that the service uses.

For example, the OData metadata document may reference custom types for additional resource collections.

<edmx:Reference Uri="http://contoso.org/Schema/CustomTypes">
<edmx:Include Namespace="CustomTypes"/>
</edmx:Reference>

Version 1.12.1 Published 67



Redfish Specification DSP0266

10.4.3 OData service document

The OData service document serves as a top-level entry point for generic OData clients. More information about the
OData service document can be found in the OData JSON Format Specification.

{
"@odata.context": "/redfish/v1l/$metadata",
"value": [{
"name": "Service",
"kind": "Singleton",
"url": "/redfish/v1/"
b A
"name": "Systems",
"kind": "Singleton",
"url": "/redfish/v1/Systems"
Jo ooo]
}

The service shall use the application/json MIME type to return the OData service document as a JSON object.
The JSON object shall contain the @odata.context context property setto /redfish/v1/$metadata .

The JSON object shall include a value property setto a JSON array that contains an entry for the service root and

each resource that is a direct child of the service root.

Table 15 describes the properties that each JSON object entry includes:

Property Description

name User-friendly resource name of the resource.

kind Type of resource. Value is singleton for all cases defined by Redfish.
url Relative URL for the top-level resource.

: Table 15 — JSON object properties

10.5 Resource responses

Services use the application/json MIME type to return resources and resource collections as JSON payloads. A

service shall not break responses for a single resource into multiple results.

68 Published Version 1.12.1



DSP0266 Redfish Specification

The format of these payloads is defined by the Redfish schema. For rules about the Redfish schema and how it maps
to JSON payloads, see the Data model and Schema definition languages clauses.

10.6 Error responses

HTTP status codes often do not provide enough information to enable deterministic error semantics. For example, if a
client makes a PATCH call and some properties do not match while others are not supported, the HTTP 400 Bad
Request status code does not tell the client which values are in error. Error responses provide the client more
meaningful and deterministic error semantics.

To provide the client with as much information about the error as possible, a Redfish service may provide multiple
error responses in the HTTP response. Additionally, the service may provide Redfish standardized errors, OEM-
defined errors, or both, depending on the implementation's ability to convey the most useful information about the
underlying error.

Table 16 describes the properties in the extended error response, which is a single JSON object:

Property Description

String. Defines a MessageId from the message registry. See the Messageld format clause for the format of
code
Messageld .

message Displays a human-readable error message that corresponds to the message in the message registry.

@Message.ExtendedInfo Displays an array of message objects. Describes one or more error messages.

: Table 16 — Error properties
See the Schema definition languages clause for references to the schema definitions of the error response payload.

The @Message.ExtendedInfo property should be present in all error responses. If the @Message.ExtendedInfo property
is present, all information necessary to process the error should be provided in the @vessage.ExtendedInfo property.
Clients should look for the @Message.ExtendedInfo property for error processing first, and fallback on the code and

message properties if @Message.ExtendedInfo is not present.

The following sample error response contains two messages in the @Message.ExtendedInfo property that describe
two different errors. The message described by the code and message properties do not provide actionable
information for the client.

{
"error": {
"code": "Base.1l.8.GeneralError",
"message"”: "A general error has occurred. See Resolution for information on how to resolve the error.",

Version 1.12.1 Published 69



Redfish Specification DSP0266

"@Message.ExtendedInfo": [{

"@odata.type": "#Message.vl_1_1.Message",
"MessageId": "Base.l.8.PropertyValueNotInList",
"RelatedProperties": ["#/IndicatorLED"],

"Message": "The value Red for the property IndicatorLED is not in the list of acceptable values.",

"MessageArgs": ["Red", "IndicatorLED"],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution”: "Choose a value from the enumeration list that the implementation can support and resubmit the request
b A

3]

"@odata.type": "#Message.vl_1_1.Message",
"MessageId": "Base.l.8.PropertyNotWritable",
"RelatedProperties": ["#/SKU"],

"Message": "The property SKU is a read only property and cannot be assigned a value.",

"MessageArgs": ["SKU"],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution”: "Remove the property from the request body and resubmit the request if the operation failed."

70

Published Version 1.12.1



DSP0266 Redfish Specification

11 Data model

One of the key tenets of Redfish is the separation of protocol from the data model. This separation makes the data
both transport and protocol agnostic. By concentrating on the data transported in the payload of the protocol (in
HTTP, it is the HTTP body), Redfish can also define the payload in any encoding and the data model is intended to be
schema-language agnostic. While Redfish uses the JSON data-interchange format, Redfish provides a common
encoding type that ensures property naming conventions that make development easier in JavaScript, Python, and
other languages. This encoding type helps the Redfish data model be more easily accessible in modern tools and
programming environments.

The data model allows an OEM to extend the model by adding an OEM resource or extending a resource.

This clause describes common data model, resource, and Redfish schema requirements.

11.1 Resources

A resource is a single entity accessed at a specific URI. Services use the application/json MIME type to return
resources as JSON payloads.

Each resource shall be strongly typed, defined by a resource type in a Redfish schema document, and identified in the
response payload by the value of the type identifier property.

Responses for a single resource shall contain the following properties:

* (@odata.id
o Registry resources are not required to provide @odata.id

* (@odata.type
e 1Id

° Name

Responses may also contain other properties defined within that resource type. Responses shall not include any
properties not defined by that resource type.

11.2 Resource types

A resource type defines the set of properties that may be returned in the response payload of a Redfish resource
request. Each resource type is documented in a Redfish schema document, and those documents are known
collectively as the Redfish schema. The resource type may also include definitions for actions available for that
resource.

Version 1.12.1 Published 71



Redfish Specification DSP0266

Resource types are named to match the contents and purpose of the resource that they define. For example the
Circuit resource type defines the properties and actions related to a single electrical circuit. Resource types provide
global uniqueness for definitions across multiple schema files and allow for schema files to reference each other.
Resource types may be defined by OEMs to extend the Redfish schema, and should follow the naming rules specified
by the OEM resource types clause.

11.3 Resource collections

A resource collection is a set of resources that share the same schema definition. Services use the application/json
MIME type to return resource collections as JSON payloads.

Resource collection responses shall contain the following properties:

* (@odata.id

* (@odata.type
¢ Name

* Members

* Members@odata.count
Responses for resource collections may contain the following properties:

* (@odata.context

* (@odata.etag

* Description

* Members@odata.nextLink

e Oem

Responses for resource collections shall not contain any other properties with the exception of payload annotations.

11.4 OEM resources

OEMs and other third parties can extend the Redfish data model by creating additional resource types. Extending the
data model is accomplished by defining an OEM resource type, and schema file, for each resource type, and creating
hyperlinks to connect instances of new resources to the resource tree.

Companies, OEMs, and other organizations may also use the oem property in resources, the links property, and the
actions property to define additional properties, hyperlinks, and actions for standard Redfish resource types.

While the information and semantics of these extensions are outside of the standard, the schema representing the
data, the resource itself, and the semantics around the protocol shall conform to the requirements in this

72 Published Version 1.12.1



DSP0266 Redfish Specification

specification. OEMs are encouraged to follow the design tenets and naming conventions in this specification when
defining OEM resources or properties.

11.5 Common data types

11.5.1 Primitive types

Table 17 describes the primitive data types for properties and action parameters in the data model:

Type Description
Boolean A variable with a value of true or false .

A number with optional decimal point or exponent. Number properties may restrict the representation to an integer or a number

Numbe
. ' with decimal point.

String A sequence of characters enclosed with double quotes ( " ).
Array A comma-separated set of the previous types enclosed with square braces ([ and 1 ). See the Array properties clause.
Object A set of properties enclosed with curly braces ( { and } ). See the Structured properties clause.

Nl null value, which the service uses when it is unable to determine the property's value due to an error or other temporary
condition, or if the schema has requirements for using null for other special conditions.

: Table 17 — Primitive data types

When receiving values from the client, services should support other valid representations of the data in the specified
JSON type. In particular, services should support valid integer and decimal values in exponential notation and integer
values that contain a decimal point with no non-zero trailing digits.

11.5.2 Empty string values

String properties should return an empty string ("") for properties configured by a user or external service that have
not been set to an initial value. This allows client software to identify the property as supported by the service, and
avoids the use of null, which indicates an error condition. For example, the AssetTag property must be set by the
end user, and therefore would return an empty string ("") until assigned a value by the user, while a failure to read the
stored AssetTag value due to a non-volatile memory error would return null . To improve interoperability,
implementations should avoid the use of filler strings, such as N/A or <Empty> , to represent a value not set by a
user.

Version 1.12.1 Published 73



Redfish Specification DSP0266

11.5.3 GUID and UUID values

Globally Unique Identifier (GUID) and Universally Unique Identifier (UUID) values are unique identifier strings and
shall use the format:

([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-F]{12})

11.5.4 Date-Time values

Date-Time values are strings according to the ISO 8601 extended format, including the time offset or UTC suffix.
Date-Time values shall use the format:

<YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>[.<SSS>](Z| ((+]|-)<HH>:<MM>))

where

e <YYYY> is the four-digit year.

¢ <MM> is the two-digit month (1 to 12).

e <DD> is the two-digit day (1 to 31).

e T isthe time separator. Shall be a capital T.

« <hh> is the two-digit hour (0 to 23).

e <mm> is the two-digit minute (0 to 59).

¢ <ss> is the two-digit second (0 to 59).

+ <Sss> is optional and is the decimal fraction of a second. Shall be one or more digits where the number of
digits implies the precision.

ez is the zero offset indicator. Shall be a capital z.

e <HH> is the two-digit hour offset (0 to 23).

¢ <MM> is the two-digit minute offset (0 to 59).
For example, 2015-03-13T04:14:33+06:00 represents March 13, 2015 at 4:14:33 with a +06:00 time offset.

When the time of day is unknown or serves no purpose, the service shall report ee:ee:eez for the time of day value.

11.5.5 Duration values

Duration values are strings according to the I1SO 8601 duration format, with the exception of not expressing a
representation for years, months, or weeks. Duration values shall use the format:

P[ DI[T[HIMI[HSH

74 Published Version 1.12.1



DSP0266 Redfish Specification

where

e <d> is the number of days.

s <h> is the number of hours.

e <m> is the number of minutes.
e <s> is the number of seconds.

e <f> is the fractional seconds.
Each field is optional and can contain more than one digit.

For example, Table 18 describes the following durations:

Value Duration

P90D Ninety days.

P3D Three days.

PT6H Six hours.

PT10S Ten seconds.

PT0.001S 0.001 seconds.

PT1H30M One hour and 30 minutes.

: Table 18 — Durations

11.5.6 Reference properties

Reference properties provide a reference to another resource in the data model. Reference properties are JSON
objects that contain an @odata.id property. The @odata.id property value is the URI of the referenced resource.

11.5.7 Non-resource reference properties

Non-resource reference properties provide a reference to services or documents that are not Redfish-defined
resources. These properties shall include the uri term in their property name. For example, AssemblyBinaryDataUri
in the Assembly schema. The access protocol and data format of the referenced URI may be defined in schema for
that property. Non-resource reference properties that refer to local HTTP/S targets shall follow the Redfish protocol,
including use of Redfish sessions and access control, unless otherwise specified by the property definition in schema.

Version 1.12.1 Published 75



Redfish Specification DSP0266

11.5.8 Array properties

Array properties contain a set of values or objects, and appear as JSON arrays within a response body. Array elements
shall all contain values of the same data type.

Table 19 describes the array types, regardless of the data type of the elements:

Array type Description
Fixed length  Contains a static number of elements. The property definition sets or the implementation chooses the size of the array.

Variable lenath Contains a variable number of elements. The array size is not specified and the size varies among instances. The array size
ariable len . .
g may change. This array style is the most common style.

The array index is meaningful. When elements are added to or removed from the array, the elements do not change their
position, or index, in the array. An element that is removed from a rigid array shall be replaced by a null element and all

Rigid other elements shall remain at their current index.
igi

Empty elements in a rigid array property shall be represented by null elements. Any array property that uses this style
shall indicate the rigid style in the long description of its schema definition.

: Table 19 — Array types

Services may pad an array property with null elements at the end of the sequence to indicate the array size to
clients. This practice is useful for small fixed length arrays, and for variable or rigid arrays with a restrictive maximum
size. Services should not pad array properties if the maximum array size is not restrictive. For example, an array
property typically populated with two elements, that a service limits to a maximum of 16 elements, should not pad
the array with 14 null elements.

11.5.9 Structured properties
Structured properties are JSON objects within a response body.

Some structured properties inherit from the Resource.vi_o_o.ReferenceableMember definition. Structured properties

that follow this definition shall contain the Memberid and resource identifier properties.

Because the definition of structured properties can evolve over time, clients need to be aware of the inheritance
model that the different structured property definitions use.

For example, the Location property definition in the Resource schema has gone through several iterations since the
Resource.vl_1_0 type was introduced, and each iteration inherits from the earlier version so that existing references

in other schemas can leverage the additions.

Structured property references need to be resolved for both local and external references.

76 Published Version 1.12.1



DSP0266 Redfish Specification

A local reference is a resource that has a structured property in its own schema, such as ProcessorSummary in the
ComputersSystem resource. In these cases, the type property for the resource is the starting point for resolving the
structured property definition.

To find the latest applicable version, clients can step the version of the resource backwards.

For example, if a service returns #ComputerSystem.v1l_4_0.ComputerSystem as the resource type, a client can step
backwards from ComputerSystem.vi 4 @ ,t0 ComputerSystem.vl 3 0,10 ComputerSystem.vl 2 @, and so on, until it
finds the Processorsummary structured property definition.

An external reference is a resource that has a property that references a definition found in a different schema, such
as the Location property in the chassis resource.

In these cases, clients can use the latest version of the external schema file as a starting point to resolve the
structured property definition.

For example, if the latest version of the Resource schemais 1.6.0, a client can go backward from Resource.vi_6_6o,

to Resource.vl 5 0, to Resource.vl_4 0, and so on, until it finds the Location structured property definition.

11.5.10 Message object

11.5.10.1 Overview
A message object provides additional information about an object, property, or error response.

Table 20 describes the properties of the message object, which is a JSON object:

Property Type Required Defines
. Error or message. Do not confuse this value with the HTTP status code. Clients can use this
MessageId String Yes . .
code to access a detailed message from a message registry.
. Human-readable error message that indicates the semantics associated with the error. This
Message String No o .
shall be the complete message, and not rely on substitution variables.
An array of
RelatedProperties JSON No Properties in a JSON payload that the message describes.
pointers
An array of Substitution parameter values for the message. If the parameterized message defines a
MessageArgs . No . . .
strings MessageId , the service shall include the MessageArgs in the response.
String Severity of the error. Services can replace the value of the MessageSeverity property defined
MessageSeverity . o . . . X ) .
(enumeration) in the message registry with a value more applicable to the implementation.

Version 1.12.1 Published 77



Redfish Specification DSP0266

Property Type Required Defines

Severity of the error. Services can replace the value of the severity property defined in the
. . message registry with a value more applicable to the implementation.
Severity String No

DEPRECATED: This property has been deprecated in favor of MessageSeverity .

. Recommended actions to take to resolve the error. Services can replace the value of the
Resolution String No ) . . . . . .
Resolution property defined in the message registry with a service-defined resolution.

: Table 20 — Message object properties

Each instance of a message object shall contain at least a MessageId , together with any applicable MessageArgs , or a

Message property that defines the complete human-readable error message.

A MessageId identifies a specific message that a message registry defines.

11.5.10.2 Messageld format

The MessageId property value shall be in the format:
<RegistryName>.<MajorVersion>.<MinorVersion>.<MessageKey>
where

e <RegistryName> is the name of the registry. The registry name shall be Pascal-cased.
= <MajorVersion> is a non-negative integer that represents the major version of the registry.
¢ <MinorVersion> is a non-negative integer that represents the minor version of the registry.

e <MessageKey> is a human-readable key into the registry. The message key shall be Pascal-cased and shall not

include spaces, periods, or special characters.
To search the message registry for a message, the client can use the MessageId .

The message registry approach has advantages for internationalization because the registry can be translated easily,
and is lightweight for implementations because large strings need not be included with the implementation.

The use of Generalkrror from the Base Message Registry as a MessageId in ExtendedInfo is discouraged. If no
better message exists or the ExtendedInfo array contains multiple messages, use Generaltrror from the Base
Message Registry only in the code property of the error object.

When an implementation uses Generalkrror from the Base Message Registry in ExtendedInfo , the implementation
should include a service-defined value for the Resolution property with this error to indicate how to resolve the
problem.

78 Published Version 1.12.1



DSP0266 Redfish Specification

11.6 Properties

11.6.1 Properties overview

Every property included in a Redfish response payload shall be defined in the schema for that resource. The following
attributes apply to all property definitions:

« Property names in the request and response payload shall match the casing of the Name attribute value in the
defining schema.

+ Required properties shall always be returned in a response.

 Properties not returned from a GET operation indicate that the property is not supported by the
implementation, or by that particular resource instance. Differences in underlying product support or
configuration varies among resource instances, and therefore the properties returned by each instance vary
accordingly.

« If an implementation supports a property, it shall always provide a value for that property. If a value is unknown
at the time of the operation due to an internal error, or inaccessibility of the data, the value of null is an
acceptable value if supported by the schema definition.

« Resource instances should omit properties if the underlying product, service, or current configuration does not
provide the function described by the property. For example, a chassis resource instance might not provide a
serial number, and therefore should omit the serialNumber property, while other chassis resource instances that
have a serial number provide this property. See the Special resource situations clause for handling special
resource situations.

+ A service may implement a writable property as read-only.

This clause also contains a set of common properties across all Redfish resources. The property names in this clause
shall not be used for any other purpose.

11.6.2 Resource identifier (@odata.id) property

Registry resources in a response may include an @odata.id property. All other resources and resource collections in a
response shall include an @odata.id property. The value of the identifier property shall be the resource URI.

11.6.3 Resource type (@odata.type) property

All resources and resource collections in a response shall include an @odata.type type property. To support generic
OData clients, all structured properties in a response should include an @odata.type type property.

The value of the type property for resources and structured properties shall be in the format:

#<ResourceType>.<Version>.<TermName>

Version 1.12.1 Published 79



Redfish Specification DSP0266

where

¢ <ResourceType> is the resource type in the Redfish schema that defines the resource.
« <«Version> is the resource type version, in the format: v<MajorVersion>_<MinorVersion>_<ErrataVersion> .

< <TermName> is the specific type defined within the resource type definition. For most Redfish resources, the
specific type name is the same as the resource type name.

An example of a resource type value is #ComputerSystem.v1_@_o.ComputerSystem , where ComputerSystem.vi_0_0
denotes the version 1.0.0 of the computersystem resource type, and the specific type is Computersystem .

The value of the type property for resource collections shall be in the format:
#<ResourceType>.<ResourceType>
where

* <ResourceType> is the resource type in the Redfish schema that defines the resource collection.

An example of a resource collection type value is #ComputerSystemCollection.ComputerSystemCollection for the

ComputerSystemCollection resource collection.

11.6.4 Resource ETag (@odata.etag) property

ETags enable clients to conditionally retrieve or update a resource. Resources should include an @odata.etag
property. For a resource, the value shall be the ETag.

11.6.5 Resource context (@odata.context) property

Responses for resources and resource collections may contain an @odata.context property that describes the source
of the payload.

If the @odata.context property is present, it shall be the context URL that describes the resource, according to OData
Protocol.

The context URL for a resource should be in the format:
/redfish/v1l/$metadata#<ResourceType>.<ResourceType>
where

+  <ResourceType> is the resource type of the resource or resource collection.

For example, the following context URL specifies that the results show a single Computersystem resource:

80 Published Version 1.12.1



DSP0266 Redfish Specification

"@odata.context": "/redfish/vl/$metadata#ComputerSystem.ComputerSystem",

The context URL for a resource may be in one of the other formats that OData Protocol specifies.

11.6.6 Id

The 1d property of a resource uniquely identifies the resource within the resource collection that contains it. The
value of 1d shall be unique across a resource collection. The 1d property shall follow the definition for 1d in the

Resource schema.

11.6.7 Name

The Name property conveys a human-readable moniker for a resource. The type of the Name property shall be string.
The value of Name is NOT required to be unique across resource instances within a resource collection. The Name
property shall follow the definition for Name in the Resource schema.

11.6.8 Description

The Description property conveys a human-readable description of the resource. The Description property shall

follow the definition for Description inthe Resource schema.

11.6.9 Memberid

The MemberId property uniquely identifies an element within an array, where a reference property can reference the
element. The MemberId value shall be unique across the array. The MemberId property shall follow the definition for
MemberId inthe Resource schema.

11.6.10 Count (Members@odata.count) property

The count property defines the total number of resource, or members, that are available in a resource collection. The
count property shall be named Members@odata.count and its value shall be the total number of members available in
the resource collection. The $top or $skip query parameters shall not affect this count. If the number of members
available in the resource collection is reduced due to filtering, such as in response to the $filter query parameter,
the count should be the total number of members available in the resource collection after the filter is applied.

Version 1.12.1 Published 81


mailto:Members@odata.count

Redfish Specification DSP0266

11.6.11 Members

The Members property of a resource collection identifies the members of the collection. The Members property is
required and shall be returned in the response for any resource collection. The Members property shall be an array of
JSON objects named Members . The Members property shall not be null . Empty collections shall be an empty JSON

array.

11.6.12 Next link (Members@odata.nextLink) property

The next link ( Members@odata.nextLink ) property value shall be an opaque URL to a resource, with the same
@odata.type , which contains the next set of partial members from the original operation. The next link property shall
only be present if the number of members in the resource collection is greater than the number of members
returned, and if the payload does not represent the end of the requested resource collection.

The Members@odata.count property value is the total number of resources available if the client enumerates all pages
of the resource collection.

11.6.13 Links

The Links property represents the hyperlinks associated with the resource, as defined by that resource's schema
definition. All associated reference properties defined for a resource shall be nested under the links property. All
directly (subordinate) referenced properties defined for a resource shall be in the root of the resource.

The links property shall be named Links and contain a property for each related resource.

To navigate vendor-specific hyperlinks, the Links property shall also include an oem property.

11.6.13.1 Reference to a related resource

A reference to a single resource is a JSON object that contains a single resource identifier property. The name of this
reference is the name of the relationship. The value of this reference is the URI of the referenced resource.

{
"Links": {
"ManagedBy": {
"@odata.id": "/redfish/v1/Chassis/Encl1"
}
}
}

82 Published Version 1.12.1


mailto:Members@odata.nextLink

DSP0266 Redfish Specification

11.6.13.2 References to multiple related resources

A reference to a set of zero or more related resources is an array of JSON objects. The name of this reference is the
name of the relationship. Each element of the array is a JSON object that contains a resource identifier property with
the value of the URI of the referenced resource.

{
"Links": {
"Contains": [{
"@odata.id": "/redfish/v1l/Chassis/1"
oA
"@odata.id": "/redfish/v1/Chassis/Encl1"
]
}
}

11.6.14 Actions property

The Actions property contains the actions supported by a resource.

11.6.14.1 Action representation

Each supported action is represented as a property nested under Actions . The unique name that identifies the
action is used to construct the property name.

This property name shall be in the format:
#<ResourceType>.<ActionName>
where

* <ResourceType> is the resource where the action is defined.

¢ <ActionName> is the name of the action.
The client may use this fragment to identify the action definition in the referenced Redfish schema document.
The property for the action is a JSON object and contains the following properties:

- The target property shall be present, and defines the relative or absolute URL to invoke the action.

« The title property may be present,and defines the action's name.

The OData JSON Format Specification defines the target and title