
Document Identifier: DSP0266

Date: 2021-01-18

Version: 1.11.2

Redfish Specification

Document Class: Normative

Document Status: Published

Document Language: en-US

Copyright Notice

Copyright © 2020-2021 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Redfish Specification DSP0266

2 Published Version 1.11.2

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1. Acknowledgments .. 10

2. Scope ... 20

3. Goals .. 20

4. Design tenets ... 21

5. Limitations .. 22

6. Additional design background and rationale .. 22

6.1. REST-based interface... 22

6.2. Data-oriented .. 23

6.3. Separation of protocol from data model .. 23

6.4. Hypermedia API Service Root .. 23

6.5. OpenAPI v3.0 support... 23

6.6. OData conventions ... 23

7. Service elements .. 24

7.1. Synchronous and asynchronous operation support.. 24

7.2. Eventing mechanism... 24

7.3. Actions .. 24

7.4. Service discovery .. 25

7.5. Remote access support .. 25

8. Security .. 25

9. Universal Resource Identifiers ... 26

10. HTTP methods ... 28

11. HTTP redirect ... 29

12. Media types .. 29

13. ETags ... 30

14. Protocol version.. 31

15. Redfish-defined URIs and relative reference rules... 32

16. Request headers .. 34

17. GET (read requests)... 39

17.1. Resource collection requests .. 40

17.2. Service Root request .. 40

17.3. OData service and metadata document requests... 40

18. Query parameters .. 41

18.1. The $expand query parameter.. 44

18.2. The $select query parameter .. 47

18.3. The $filter query parameter... 47

19. HEAD ... 49

19.1. Data modification requests ... 49

19.2. Modification success responses ... 50

19.3. Modification error responses... 50

20. PATCH (update) ... 50

21. PATCH on array properties... 52

DSP0266 Redfish Specification

Version 1.11.2 Published 3

22. PUT (replace) ... 53

23. POST (create) .. 54

24. DELETE (delete) .. 55

25. POST (Action) .. 55

26. Operation apply time .. 58

27. Deep operations ... 61

28. Response headers ... 67

29. Link header... 70

30. Status codes... 70

31. OData metadata responses ... 73

31.1. OData $metadata.. 74

31.1.1. Referencing other schemas... 74

31.1.2. Referencing OEM extensions .. 75

31.2. OData service document .. 16

32. Resource responses .. 76

33. Error responses.. 76

34. Resources .. 79

35. Resource collections .. 79

36. OEM resources .. 80

37. Common data types ... 80

37.1. Primitive types... 81

37.2. Empty string values... 81

37.3. GUID and UUID values ... 81

37.4. Date-Time values .. 82

37.5. Duration values ... 82

37.6. Reference properties .. 83

37.7. Non-resource reference properties ... 84

37.8. Array properties .. 84

37.9. Structured properties .. 85

37.10. Message object ... 85

37.10.1. Overview.. 20

37.10.2. MessageId format .. 87

38. Properties ... 88

38.1. Resource identifier (@odata.id) property .. 88

38.2. Resource type (@odata.type) property... 88

38.3. Resource ETag (@odata.etag) property ... 89

38.4. Resource context (@odata.context) property ... 89

38.5. Id ... 90

38.6. Name .. 90

38.7. Description .. 90

38.8. MemberId .. 90

38.9. Count (Members@odata.count) property ... 90

38.10. Members ... 91

Redfish Specification DSP0266

4 Published Version 1.11.2

38.11. Next link (Members@odata.nextLink) property ... 91

38.12. Links.. 91

38.12.1. Reference to a related resource .. 91

38.12.2. References to multiple related resources .. 92

38.13. Actions property .. 92

38.13.1. Action representation... 92

38.13.2. Action responses ... 94

38.14. Oem .. 94

38.15. Status .. 94

39. Resource, schema, property, and URI naming conventions .. 94

40. Extending standard resources.. 96

40.1. OEM property format and content... 96

40.2. OEM property naming... 97

40.3. OEM resource naming and URIs .. 98

40.4. OEM property examples ... 98

40.5. OEM actions ... 99

41. Payload annotations... 100

41.1. Allowable values ... 101

41.2. Extended information .. 101

41.2.1. Extended object information .. 101

41.2.2. Extended property information .. 102

41.3. Action info annotation ... 103

41.4. Settings and settings apply time annotations.. 104

41.5. Operation apply time and operation apply time support annotations................................ 104

41.6. Maintenance window annotation... 104

41.7. Collection capabilities annotation.. 105

41.8. Requested count and allow over-provisioning annotations... 107

41.9. Zone affinity annotation... 108

41.10. Supported certificates annotation ... 108

41.11. Deprecated annotation .. 108

42. Settings resource ... 109

43. Special resource situations .. 111

43.1. Overview ... 20

43.2. Absent resources .. 111

44. Registries ... 111

45. Schema annotations... 112

45.1. Description annotation .. 113

45.2. Long description annotation.. 113

45.3. Resource capabilities annotation .. 113

45.4. Resource URI patterns annotation.. 114

45.5. Additional properties annotation ... 115

45.6. Permissions annotation... 115

45.7. Required annotation.. 115

DSP0266 Redfish Specification

Version 1.11.2 Published 5

45.8. Required on create annotation.. 115

45.9. Units of measure annotation ... 115

45.10. Expanded resource annotation ... 115

45.11. Owning entity annotation... 116

45.12. Deprecated annotation.. 116

46. Versioning... 116

47. Localization .. 117

48. Registry file naming.. 118

49. Profile file naming... 118

50. Dictionary file naming ... 118

51. Localized file naming.. 119

52. DMTF Redfish file repository .. 119

53. OData Common Schema Definition Language .. 121

53.1. File naming conventions for CSDL ... 121

53.2. Core CSDL files .. 121

53.3. CSDL format ... 122

53.3.1. Referencing other CSDL files .. 122

53.3.2. CSDL data services ... 123

53.4. Elements of CSDL namespaces ... 123

53.4.1. Qualified names... 123

53.4.2. Entity type and complex type elements ... 124

53.4.3. Action element ... 125

53.4.4. Property element ... 127

53.4.5. Navigation property element.. 128

53.4.6. Enum type element.. 129

53.4.7. Annotation element.. 129

54. JSON Schema.. 132

54.1. File naming conventions for JSON Schema ... 132

54.2. Core JSON Schema files .. 132

54.3. JSON Schema format ... 133

54.4. JSON Schema definitions body .. 133

54.4.1. Resource definitions in JSON Schema ... 133

54.4.2. Enumerations in JSON Schema.. 135

54.4.3. Actions in JSON Schema .. 136

54.5. JSON Schema terms .. 139

55. OpenAPI ... 140

55.1. File naming conventions for OpenAPI schema... 140

55.2. Core OpenAPI schema files.. 140

55.3. openapi.yaml... 140

55.4. OpenAPI file format... 143

55.5. OpenAPI components body .. 143

55.5.1. Resource definitions in OpenAPI... 143

55.5.2. Enumerations in OpenAPI ... 144

Redfish Specification DSP0266

6 Published Version 1.11.2

55.5.3. Actions in OpenAPI ... 145

55.6. OpenAPI terms used by Redfish... 147

56. Schema modification rules ... 147

57. Eventing ... 149

57.1. POST to subscription collection .. 149

57.2. Open an SSE connection.. 150

57.3. EventType-based eventing ... 151

57.4. Subscribing to events.. 152

57.5. Event formats .. 153

57.6. OEM extensions.. 154

58. Asynchronous operations... 154

59. Resource tree stability .. 156

60. Discovery.. 156

60.1. UPnP compatibility .. 157

60.2. USN format ... 157

60.3. M-SEARCH response ... 157

60.4. Notify, alive, and shutdown messages .. 158

61. Server-Sent Events .. 158

61.1. General ... 158

61.2. Event service .. 159

61.2.1. Event message SSE stream.. 161

61.2.2. Metric report SSE stream .. 162

62. Update Service... 163

62.1. Overview ... 20

62.2. Software update types .. 163

62.2.1. Simple updates .. 164

62.2.2. Multipart HTTP push updates.. 164

63. Transport Layer Security (TLS) protocol .. 167

63.1. Cipher suites ... 167

63.2. Certificates .. 168

64. Sensitive data ... 168

65. Authentication... 168

65.1. Authentication requirements ... 169

65.1.1. Resource and operation authentication requirements..................................... 169

65.1.2. HTTP header authentication requirements.. 169

65.1.3. Authentication failure requirements ... 169

65.2. HTTP Basic authentication ... 170

65.3. Redfish session login authentication... 170

65.3.1. Redfish login sessions... 170

65.3.2. Session login ... 171

65.3.3. Session lifetime ... 172

65.3.4. Session termination or logout .. 172

66. Authorization .. 173

DSP0266 Redfish Specification

Version 1.11.2 Published 7

66.1. Privilege model ... 173

66.2. Redfish service operation-to-privilege mapping.. 174

66.2.1. Why specify operation-to-privilege mapping?.. 174

66.2.2. Representing operation-to-privilege mappings.. 174

66.2.3. Operation map syntax ... 175

66.2.4. Mapping overrides syntax.. 176

66.2.5. Property override example .. 177

66.2.6. Subordinate override ... 178

66.2.7. Resource URI override .. 180

66.2.8. Privilege AND and OR syntax ... 181

67. Account service .. 182

67.1. Password management .. 182

67.2. Password change required handling... 182

68. Asynchronous tasks ... 183

69. Event subscriptions .. 183

70. Composition requests... 185

70.1. Specific composition ... 185

70.2. Constrained composition .. 186

70.3. Expandable resources .. 188

71. Updating a composed resource ... 188

72. Classes of aggregators .. 189

72.1. Use cases ... 190

73. Aggregation service.. 190

73.1. Aggregator requirements .. 191

73.1.1. Aggregates .. 191

73.2. Aggregation sources and connection methods... 192

Redfish Specification DSP0266

8 Published Version 1.11.2

Foreword

The Redfish Forum of the DMTF develops the Redfish standard.

DMTF is a not-for-profit association of industry members that promotes enterprise and systems

management and interoperability. For information about the DMTF, see DMTF.

DSP0266 Redfish Specification

Version 1.11.2 Published 9

https://www.dmtf.org/

1. Acknowledgments

The DMTF acknowledges the following individuals for their contributions to the Redfish standard,

including this document and Redfish schemas, interoperability profiles, and Message Registries:

• Rafiq Ahamed - Hewlett Packard Enterprise

• Richelle Ahlvers - Broadcom Inc.

• Jeff Autor - Hewlett Packard Enterprise

• David Black - Dell Inc.

• Jeff Bobzin - Insyde Software Corp.

• Patrick Boyd - Dell Inc.

• David Brockhaus - Vertiv

• Richard Brunner - VMware Inc.

• Sean Byland - Cray Inc.

• Lee Calcote - Seagate Technology

• Keith Campbell - Lenovo

• P Chandrasekhar - Dell Inc.

• Barbara Craig - Hewlett Packard Enterprise

• Chris Davenport - Hewlett Packard Enterprise

• Gamma Dean - Vertiv

• Daniel Dufresne - Dell Inc.

• Samer El-Haj-Mahmoud - Arm Limited, Lenovo, Hewlett Packard Enterprise

• George Ericson - Dell Inc.

• Wassim Fayed - Microsoft Corporation

• Kevin Ferguson - Vertiv

• Mike Garrett - Hewlett Packard Enterprise

• Steve Geffin - Vertiv

• Joe Handzik - Hewlett Packard Enterprise

• Jon Hass - Dell Inc.

• Jeff Hilland - Hewlett Packard Enterprise

• Chris Hoffman - Vertiv

• Cactus Jiang - Vertiv

• Barry Kittner - Intel Corporation

• Steven Krig - Intel Corporation

• Jennifer Lee - Intel Corporation

• John Leung - Intel Corporation

• Magnus Lundmark - Ericsson AB

• Steve Lyle - Hewlett Packard Enterprise

• Gunnar Mills - IBM

• Jagan Molleti - Dell Inc.

• Milena Natanov - Microsoft Corporation

Redfish Specification DSP0266

10 Published Version 1.11.2

• Scott Phuong - Cisco Systems, Inc.

• Michael Pizzo - Microsoft Corporation

• Chris Poblete - Dell Inc.

• Michael Raineri - Dell Inc.

• Joseph Reynolds - IBM

• Irina Salvan - Microsoft Corporation

• Bill Scherer - Hewlett Packard Enterprise

• Hemal Shah - Broadcom Inc.

• Jim Shelton - Vertiv

• Tom Slaight - Intel Corporation

• Josiah Smith - Eaton

• Donnie Sturgeon - Vertiv

• Pawel Szymanski - Intel Corporation

• Paul Vancil - Dell Inc.

• Joseph White - Dell Inc.

• Linda Wu - NVIDIA Corporation, Super Micro Computer, Inc.

DSP0266 Redfish Specification

Version 1.11.2 Published 11

Abstract

Redfish is a standard that uses RESTful interface semantics to access a schema based data model to

conduct management operations. It is suitable for a wide range of devices, from stand-alone servers, to

composable infrastructures, and to large-scale cloud environments.

The initial Redfish scope targeted servers.

The DMTF and its alliance partners expanded that scope to cover most data center IT equipment and

other solutions, and both in- and out-of-band access methods.

Additionally, the DMTF and other organizations that use Redfish as part of their industry standard or

solution have added educational material.

Redfish Specification DSP0266

12 Published Version 1.11.2

Normative references

The following referenced documents are indispensable for the application of this document. For dated or

versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.

For references without a date or version, the latest published edition of the referenced document

(including any corrigenda or DMTF update versions) applies.

• Architectural Styles and the Design of Network-based Software Architectures, R. Fielding, 2000.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

• DMTF DSP0270 Redfish Host Interface Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0270_1.0.pdf

• HTML Living Standard: Server-sent events https://html.spec.whatwg.org/multipage/server-sent-

events.html

• IANA: Transport Layer Security (TLS) Parameters, https://www.iana.org/assignments/tls-

parameters/tls-parameters.xhtml

• ISO 639-1:2002 ISO 639-1:2002 Codes for the representation of names of languages -- Part 1:

Alpha-2 code

• IETF RFC1738, T. Berners-Lee et al, Uniform Resource Locators (URL), https://tools.ietf.org/

html/rfc1738

• IETF RFC3986, T. Berners-Lee et al, Uniform Resource Identifier (URI): Generic Syntax,

https://tools.ietf.org/html/rfc3986

• IETF RFC5280, D. Cooper et al, Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile, https://tools.ietf.org/html/rfc5280

• IETF RFC5288, J. Salowey et al, AES Galois Counter Mode (GCM) Cipher Suites for TLS,

https://tools.ietf.org/html/rfc5288

• IETF RFC5487, M. Badra et al, Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and

AES Galois Counter Mode, https://tools.ietf.org/html/rfc5487

• IETF RFC5789, L. Dusseault et al, PATCH Method for HTTP, https://tools.ietf.org/html/rfc5789

• IETF RFC6585, M. Nottingham, et al, Additional HTTP Status Codes, https://tools.ietf.org/html/

rfc6585

• IETF RFC6901, P. Bryan, Ed. et al, JavaScript Object Notation (JSON) Pointer,

https://tools.ietf.org/html/rfc6901

• IETF RFC6906, E. Wilde, The 'profile' Link Relation Type, https://tools.ietf.org/html/rfc6906

• IETF RFC7230, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and

Routing, https://tools.ietf.org/html/rfc7230

• IETF RFC7231, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content, https://tools.ietf.org/html/rfc7231

• IETF RFC7232, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Conditional

DSP0266 Redfish Specification

Version 1.11.2 Published 13

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.pdf
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iso.org/standard/22109.html
https://www.iso.org/standard/22109.html
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5487
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6906
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231

Requests, https://tools.ietf.org/html/rfc7232

• IETF RFC7234, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Caching,

https://tools.ietf.org/html/rfc7234

• IETF RFC7525, Y. Sheffer et al., Recommendations for Secure Use of Transport Layer Security

(TLS) and Datagram Transport Layer Security (DTLS), https://tools.ietf.org/html/rfc7525

• IETF RFC7578, L. Masinter et al., Returning Values from Forms: multipart/form-data,

https://tools.ietf.org/html/rfc7578

• IETF RFC7617, J. Reschke et al., The 'Basic' HTTP Authentication Scheme, https://tools.ietf.org/

html/rfc7617

• IETF RFC8259, T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format,

https://tools.ietf.org/html/rfc8259

• IETF RFC8288, M. Nottingham, Web Linking, https://tools.ietf.org/html/rfc8288

• ISO/IEC Directives, ISO/IEC Directives, Part 2 (English), https://isotc.iso.org/livelink/

livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH

• JSON Schema: A Media Type for Describing JSON Documents draft-handrews-json-schema-01,

https://tools.ietf.org/html/draft-handrews-json-schema-01

• JSON Schema Validation: A Vocabulary for Structural Validation of JSON draft-handrews-json-

schema-validation-01, https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

• OData Version 4.0 Plus Errata 03: Core Vocabulary. 10 March 2016. https://docs.oasis-open.org/

odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml

• OData JSON Format Version 4.0. 24 February 2014. https://docs.oasis-open.org/odata/odata-

json-format/v4.0/os/odata-json-format-v4.0-os.html

• OData Version 4.0 Part 1: Protocol. 24 February 2014. https://docs.oasis-open.org/odata/odata/

v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html

• OData Version 4.0 Part 2: URL Conventions. 24 February 2014. https://docs.oasis-open.org/

odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

• OData Version 4.0 Part 3: Common Schema Definition Language (CSDL). 24 February 2014.

https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

• OData Version 4.0 Plus Errata 03: Units of Measure Vocabulary. 10 March 2016.

https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/

Org.OData.Measures.V1.xml

• The OpenAPI Specification https://github.com/OAI/OpenAPI-Specification

• Redfish Schema: RedfishExtensions. https://redfish.dmtf.org/schemas/v1/

RedfishExtensions_v1.xml

• Simple Service Discovery Protocol/1.0 Operating without an Arbiter. 28 October 1999.

https://tools.ietf.org/html/draft-cai-ssdp-v1-03

• SNIA TLS Specification for Storage Systems. 20 November 2014. https://www.snia.org/

tech_activities/standards/curr_standards/tls

• The Unified Code for Units of Measure. https://www.unitsofmeasure.org/ucum.html

• W3C Cross-Origin Resource Sharing. 16 January 2014. https://www.w3.org/TR/cors/

Redfish Specification DSP0266

14 Published Version 1.11.2

https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288
https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH
https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://swagger.io/specification/
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.unitsofmeasure.org/ucum.html
https://www.w3.org/TR/cors

Terms and definitions

Some terms and phrases in this document have specific meanings beyond their typical English meanings.

This clause defines those terms and phrases.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),

"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described

in ISO/IEC Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term,

for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that

ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional

alternatives shall be interpreted in their normal English meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as

described in ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do

not contain normative content. Notes and examples are always informative elements.

The term "deprecated" in this document is to be interpreted as material that is not recommended for use

in new development efforts. Existing and new implementations may use this material, but they should

move to the favored approach. Deprecated material may be implemented in order to achieve backwards

compatibility. Deprecated material should contain references to the last published version that included

the deprecated material as normative material and to a description of the favored approach. Deprecated

material may be removed from the next major version of the specification.

The following typographical convention indicates deprecated material:

DEPRECATED

Deprecated material appears here.

END DEPRECATED

In places where this typographical convention cannot be used, such as tables or figures, the

"DEPRECATED" label is used alone.

This document defines these additional terms:

DSP0266 Redfish Specification

Version 1.11.2 Published 15

Term Definition

baseboard management controller

(BMC)

Embedded device or service. Typically an independent

microprocessor or system-on-chip with associated firmware in

a computer system that completes out-of-band systems

monitoring and management-related tasks.

collection See resource collection.

CRUD
Basic Create, Read, Update, and Delete operations that any

interface can support.

event Data structure that corresponds to one or more alerts.

excerpt

Subset of data that is copied from one resource and

presented in another resource. An excerpt provides data in

convenient locations without duplication of entire resources.

hypermedia API
API that enables you to navigate through URIs that a service

returns.

managed system
System that provides information, status, or control through a

Redfish-defined interface.

member Single resource instance in a resource collection.

message

Complete HTTP- or HTTPS-formatted request or response. In

the REST-based Redfish protocol, every request should result

in a response.

OData service document
Resource that provides information about the Service Root for

generic OData clients.

OData Open Data Protocol, as defined in OData Protocol.

operation
HTTP POST, GET, PUT, PATCH, HEAD, and DELETE

request methods that map to generic CRUD operations.

parent resource

A resource is a parent to another resource if the initial

segment of the resource URI is the same as the URI of the

other resource, but is at least one level higher. For example,

/redfish/v1/Chassis/A88 is a parent resource of

/redfish/v1/Chassis/A88/Assembly.

property
Name-and-value pair in a Redfish-defined request or

response. A property can be any valid JSON data type.

Redfish Specification DSP0266

16 Published Version 1.11.2

Term Definition

Redfish client
Communicates with a Redfish Service and accesses one or

more of the service's resources or functions.

Redfish event receiver
Software that runs at the event destination that receives

events from a Redfish Service.

Redfish protocol
Discovers, connects to, and inter-communicates with a

Redfish Service.

Redfish provider

Interacts with a Redfish Service to contribute resources to the

Redfish resource tree and reacts to changes in its resources.

Redfish providers include:

• Internal provider. The Redfish Service itself that

has a data model and can react to RESTful

operations from a client.

• External provider. A designed means for agents

external to the Redfish Service to augment the

Redfish resource tree.

This specification does not describe the interaction between a

Redfish provider and a Redfish Service.

Redfish schema

Defines Redfish resources according to OData schema

representation. You can directly translate a Redfish schema

to a JSON Schema representation.

Redfish Service

Implementation of the protocols, resources, and functions that

deliver the interface that this specification defines and its

associated behaviors for one or more managed systems. Also

known as the service.

request Message from a client to a service.

resource collection
Set of similar resources where the number of instances can

shrink or grow.

resource tree

Tree structure of resources accessible through a well-known

starting URI. A client may discover the available resources on

a Redfish Service by following the resource hyperlinks from

the base of the tree.

DSP0266 Redfish Specification

Version 1.11.2 Published 17

Term Definition

resource Redfish data structure that is addressable by a URI.

response
Message from a service to a client in response to a request

message.

Service Root

Starting-point resource for locating and accessing the other

resources and associated metadata that make up an instance

of a Redfish Service.

subordinate resource

A resource is subordinate to another resource if the initial

segment of the resource URI is the same as the URI of the

other resource, but is at least one level deeper. For example,

/redfish/v1/Chassis/A88/Assembly is a subordinate

resource of the Chassis resource named A88.

subscription Registration of a destination to receive events.

task Representation of a long-running operation.

task monitor
Opaque service-generated URI that the client who initiates

the request can use to monitor an asynchronous operation.

Redfish Specification DSP0266

18 Published Version 1.11.2

Symbols and abbreviated terms

This document uses these symbols and abbreviated terms:

Symbol or abbreviated term Definition

BMC Baseboard management controller

CORS Cross-origin resource sharing

CRUD Create, read, update, and delete

CSRF Cross-Site Request Forgery

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over TLS

IP Internet Protocol

IPMI Intelligent Platform Management Interface

JSON JavaScript Object Notation

KVM-IP Keyboard, Video, Mouse redirection over IP

NIC Network interface controller

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

TCP Transmission Control Protocol

XSS Cross-site scripting

DSP0266 Redfish Specification

Version 1.11.2 Published 19

Overview

Redfish is a management standard that uses a data model representation with a RESTful interface.

Being RESTful, Redfish is easier to use and implement.

Being model-oriented, it can express the relationships between components and the semantics of the

Redfish Services and components within them. The model is also easy to extend.

By requiring JSON representation, Redfish enables easy integration with programming environments. It is

also easy to interpret by humans.

An interoperable Redfish schema defines this model, which is freely available and published in OpenAPI

YAML, OData CSDL, and JSON Schema formats.

2. Scope

This specification defines the required protocols, data model, behaviors, and other architectural

components for an interoperable, multivendor, remote, and out-of-band capable interface. This interface

meets the cloud-based and web-based IT professionals' expectations for scalable platform management.

While large and hyperscale environments are the primary focus, clients can use the specification for

individual system management.

The specification defines the required elements for all Redfish implementations, and the optional

elements that system vendors and manufacturers can choose. This specification also defines at which

points an implementation can provide OEM-specific extensions.

The specification sets normative requirements for Redfish Services and associated materials, such as

Redfish schema files. In general, the specification does not set requirements for Redfish clients but

indicates what a client should do to successfully and effectively access and use a Redfish Service.

The specification does not require that implementations of the Redfish interfaces and functions require

particular hardware or firmware.

3. Goals

As an architecture, data representation, and definition of protocols that enable a client to access Redfish

Redfish Specification DSP0266

20 Published Version 1.11.2

Services, Redfish has these goals:

Goal Purpose

Scalable Can scale on stand-alone machines or racks of equipment.

Flexible Can implement through existing hardware or entirely as a software service.

Extensible Can easily add new and vendor-specific capabilities to the data model.

Backward-

compatible
Can add capabilities while preserving investments in earlier implementations.

Interoperable Provides consistent functionality across multiple vendor implementations.

Standards-

based

Built on ubiquitous and secure protocols. Leverages other standards where

applicable.

Simple
Easy-to-use without the need for highly specialized programming skills or

systems knowledge.

Lightweight
Designed to reduce complexity and implementation costs. Minimizes the required

footprint for implementations.

4. Design tenets

To deliver these goals, Redfish:

• Provides a RESTful interface by using a JSON payload and a data model.

• Separates the protocol from the data model, which enables the independent revision and use of

each.

• Specifies versioning rules for protocols and schema.

• Leverages strength of ubiquitous standards where it meets architectural requirements, such as

JSON, HTTP, OData, OpenAPI, and the RFCs that this document references.

• Organizes the data model so that it provides clearly demarcated and value-add features in the

same payload as standardized items.

• Makes data in payloads as obvious in context as possible.

• Maintains implementation flexibility. Does not tie the interface to any particular underlying

implementation or architecture.

• Focuses on widely used capabilities. To avoid complexity, does not add functions that only a

small percentage of users value.

DSP0266 Redfish Specification

Version 1.11.2 Published 21

5. Limitations

Redfish minimizes the need for clients to complete upgrades by using strict versioning and forward-

compatibility rules, and separation of the protocols from the data model. However, Redfish does not

guarantee that clients never need to update their software. For example, clients might need to upgrade to

manage new system or component types, or update the data model.

Interoperable does not mean identical. Many elements of Redfish are optional. Clients should be

prepared to discover the optional elements by using the built-in discovery methods.

The resource tree reflects the topology of the system and its devices. Consequently, different hardware or

device types result in different resource trees, even for identical systems from the same manufacturer.

References between resources may result in a graph instead of a tree. Clients that traverse the resource

tree should provide logic to avoid infinite loops.

Additionally, not all Redfish resources use simple REST read-and-write semantics. Different use cases

may follow other types of client logic. For example, clients cannot simply read user credentials or

certificates from one service and write them to another service.

Finally, the hyperlink values between resources and other elements can vary across implementations.

Clients should not assume that they can reuse hyperlinks across different Redfish Service instances.

6. Additional design background and rationale

6.1. REST-based interface

Redfish exposes many service applications as RESTful interfaces. This document defines a RESTful

interface.

Redfish defines a RESTful interface because it:

• Enables a lightweight implementation, using fewer layers than previous standards.

• Is a prevalent access method in the industry.

• Is easy to learn, document, and implement in modern programming languages.

• Has a number of development environments and a healthy tooling ecosystem.

• Fits with the design goal of simplicity.

• Equally applies to software application space as it does to embedded environments, which

enables convergence and sharing of code within the management ecosystem.

• Adapts well to any data modeling language.

• Has industry-provided security and discovery mechanisms.

Redfish Specification DSP0266

22 Published Version 1.11.2

6.2. Data-oriented

The Redfish data model is developed by focusing on the contents of the payload. By concentrating on the

contents of the payload first, Redfish payloads are easily mapped to schema definition languages and

encoding types. The data model is defined in various schema languages, including OpenAPI YAML,

OData CSDL, and JSON Schema.

6.3. Separation of protocol from data model

Redfish separates the protocol operations from the data model and versions the protocol independently

from the data model. This enables clients to extend and change the data model as needed without

requiring the protocol version to change.

6.4. Hypermedia API Service Root

Redfish has a single Service Root URI and clients can discover all resources through referenced URIs.

The hypermedia API enables the discovery of resources through hyperlinks.

6.5. OpenAPI v3.0 support

The OpenAPI v3.0 provides a rich ecosystem of tools for using RESTful interfaces that meet the design

requirements of that specification. Starting with Redfish Specification v1.6.0, the Redfish schemas

support the OpenAPI YAML file format and URI patterns that conform to the OpenAPI Specification were

defined. Conforming Redfish Services that support the Redfish protocol version v1.6.0 or later implement

those URI patterns to enable use of the OpenAPI ecosystem.

For details, see OpenAPI Specification v3.0.

6.6. OData conventions

With the popularity of RESTful APIs, there are nearly as many RESTful interfaces as there are

applications. While following REST patterns helps promote good practices, due to design differences

between the many RESTful APIs there few common conventions between them.

To provide for interoperability between APIs, OData defines a set of common RESTful conventions and

annotations. Redfish adopts OData conventions for describing schema, URL conventions, and definitions

for typical properties in a JSON payload.

DSP0266 Redfish Specification

Version 1.11.2 Published 23

7. Service elements

7.1. Synchronous and asynchronous operation support

Some operations can take more time than a client typically wants to wait. For this reason, some

operations can be asynchronous at the discretion of the service. The request portion of an asynchronous

operation is no different from the request portion of a synchronous operation.

To determine whether an operation was completed synchronously or asynchronously, clients can review

the HTTP status codes. For more information, see the Asynchronous operations clause.

7.2. Eventing mechanism

Redfish enables clients to receive messages outside the normal request and response paradigm. The

service uses these messages, or events, to asynchronously notify the client of a state change or error

condition, usually of a time critical nature.

This specification defines two styles of eventing:

• Push-style eventing.

When the service detects the need to send an event, it calls HTTP POST to push the event

message to the client. Clients can enable reception of events by creating a subscription entry in

the Event Service, or an administrator can create subscriptions as part of the Redfish Service

configuration.

• Server-Sent Events (SSE)-style eventing.

The client opens an SSE connection to the service through a GET on the

ServerSentEventUri-specified URI in the Event Service.

For information, see the Eventing clause.

7.3. Actions

Actions are Redfish operations that do not easily map to RESTful interface semantics. These types of

operations may not directly affect properties in the Redfish resources. The Redfish schema defines

certain standard actions for common Redfish resources. For these standard actions, the Redfish schema

contains the normative language on the behavior of the action.

Redfish Specification DSP0266

24 Published Version 1.11.2

7.4. Service discovery

While the service itself is at a well-known URI, clients need to discover the network address of the

service. Like UPnP, Redfish uses SSDP for discovery. A wide variety of devices, such as printers and

client operating systems, support SSDP. It is simple, lightweight, IPv6 capable, and suitable for

implementation in embedded environments.

For more information, see the Discovery clause.

7.5. Remote access support

Remote management functionality typically includes access mechanisms for redirecting operator

interfaces such as serial console, keyboard video and mouse (KVM-IP), command shell, or command-line

interface, and virtual media. While these mechanisms are critical functionality, they cannot be reasonably

implemented as a RESTful interface.

Therefore, this standard does not define the protocols or access mechanisms for those services but

encourages implementations that leverage existing standards. However, the Redfish schema includes

resources and properties that enable client discovery of these capabilities and access mechanisms to

enable interoperability.

8. Security

The challenge of remote interface security is to protect both the interface and exchanged data. To

accomplish this, Redfish provides authentication and encryption. As part of this security, Redfish defines

and requires minimum levels of encryption.

For more information, see the Security details clause.

DSP0266 Redfish Specification

Version 1.11.2 Published 25

Protocol details

In this document, the Redfish protocol refers to the RESTful mapping to HTTP, TCP/IP, and other

protocol, transport, and messaging layer aspects. HTTP is the application protocol that transports the

messages and TCP/IP is the transport protocol. The RESTful interface is a mapping to the message

protocol.

The Redfish protocol is designed around a web service-based interface model. This provides network and

interaction efficiency for both user interface (UI) and automation usage. Specifically, the protocol can

leverage existing tool chains.

The Redfish protocol uses these items for these purposes:

Item Purpose

HTTP methods Maps to common CRUD operations.

Actions Expands operations beyond CRUD-type operations.

Media types Negotiates the type of data sent in the message body.

HTTP status codes Indicates the success or failure of the server's request.

Error responses Returns more information than HTTP status codes.

TLS Secures messages. See Security details.

Asynchronous semantics For long-running operations.

A Redfish interface shall be exposed through a web service endpoint implemented by using HTTP

version 1.1. See RFC7230, RFC7231, and RFC7232.

The subsequent clauses describe how the Redfish interface uses and adds constraints to HTTP to

ensure interoperability of Redfish implementations.

9. Universal Resource Identifiers

A Universal Resource Identifier (URI) identifies a resource, including the Service Root and all Redfish

resources.

Redfish Specification DSP0266

26 Published Version 1.11.2

• A URI shall identify each unique instance of a resource.

• URIs shall not include any RFC1738-defined unsafe characters.

◦ For example, the {, }, , |, ^, ~, [,], `, and \ characters are unsafe because gateways

and other transport agents can sometimes modify these characters.

◦ Do not use the # character for anything other than the start of a fragment.

• URIs shall not include any percent-encoding of characters. This restriction does not apply to the

query parameters portion of the URI.

Performing a GET operation on a URI returns a representation of the resource with properties and

hyperlinks to associated resources. The Service Root URI is well known and is based on the protocol

version.

To discover the URIs to additional resources, extract the associated resource hyperlinks from earlier

responses. The hypermedia API enables the discovery of resources through hyperlinks.

Redfish considers the RFC3986-defined scheme, authority, Service Root, and version, and unique

resource path component parts of the URI.

For example, this URI:

https://mgmt.vendor.com/redfish/v1/Systems/1

Contains these component parts:

Component part Defines

https: Scheme.

mgmt.vendor.com Authority to which to delegate the URI.

redfish/v1 Service Root and version.

Systems/1 Unique resource path.

In a URI:

• The scheme and authority component parts are not part of the unique resource path because

redirection capabilities and local operations may cause the connection portion to vary.

• The Service Root and resource path component parts uniquely identify the resource in a Redfish

Service.

In an implementation:

• The resource path component part shall be unique.

DSP0266 Redfish Specification

Version 1.11.2 Published 27

• A relative reference in the body and HTTP headers payload can identify a resource in that same

implementation.

• An absolute URI in the body and HTTP headers payload can identify a resource in a different

implementation.

For the absolute URI definition, see RFC3986.

For example, a POST operation may return the /redfish/v1/Systems/2 URI in the Location

header of the response, which points to the POST-created resource.

Assuming that the client connects through the mgmt.vendor.com appliance, the client accesses the

resource through the https://mgmt.vendor.com/redfish/v1/Systems/2 absolute URI.

URIs that conform to RFC3986 may also contain the query, ?query, and frag, #frag, components. For

information about queries, see Query parameters. When a URI includes a fragment (frag) to submit an

operation, the server ignores the fragment.

If a property in a response references another property within a resource, use the RFC6901-defined URI

fragment identifier representation format. If the property is a reference property in the schema, the

fragment shall reference a valid resource identifier. For example, the following fragment identifies a

property at index 0 of the Fans array in the /redfish/v1/Chassis/MultiBladeEncl/Thermal

resource:

{

"@odata.id": "/redfish/v1/Chassis/MultiBladeEncl/Thermal#/Fans/0"

}

For requirements on constructing Redfish URIs, see the resource URI patterns annotation clause.

10. HTTP methods

The following table describes the mapping of HTTP methods to the operations that are supported by

Redfish. The Required column specifies whether a Redfish interface supports the method.

• If the value is Yes, the HTTP method shall be supported.

• If the value is No, the value may be supported.

For HTTP methods that the Redfish service does not support or that the following table omits, the Redfish

service shall return the HTTP 405 Method Not Allowed status code or the HTTP 501 Not

Implemented status code.

Redfish Specification DSP0266

28 Published Version 1.11.2

HTTP method Interface semantic Required

POST

Resource create

Resource action

Eventing

Yes

GET Resource retrieval Yes

PUT Resource replace No

PATCH Resource update Yes

DELETE Resource delete Yes

HEAD Resource header retrieval No

OPTIONS
Header retrieval

Cross-origin resource sharing (CORS) preflight
No

11. HTTP redirect

HTTP redirect enables a service to redirect a request to another URL. Among other things, HTTP redirect

enables Redfish resources to alias areas of the data model.

All Redfish clients shall correctly handle HTTP redirect.

The service for the redirected resource shall enforce the authentication and authorization requirements

for the redirected resource.

12. Media types

Some resources may be available in more than one type of representation. The media type indicates the

representation type.

In HTTP messages, the media type is specified in the Content-Type header. To tell a service to send

the response through certain media types, the client sets the HTTP Accept header to a list of the media

types.

• All resources shall be available through the JSON application/json media type.

• Redfish services shall make every resource available in a JSON-based representation as a

JSON object, as specified in RFC8259. Receivers shall not reject a JSON-encoded message,

and shall offer at least one JSON-based response representation. An implementation may offer

additional non-JSON media type representations.

DSP0266 Redfish Specification

Version 1.11.2 Published 29

To request compression in the response body, clients specify an Accept-Encoding request header.

13. ETags

To reduce unnecessary RESTful accesses to resources, the Redfish Service should support the

association of a separate entity tag (ETag) with each resource.

• Implementations should support the return of ETag properties for each resource.

• Implementations should support the return of ETag headers for each single-resource response.

• Implementations shall support the return of ETag headers for GET requests of

ManagerAccount resources.

Because the service knows whether the new version of the object is substantially different, the service

generates and provides the ETag as part of the resource payload.

The ETag mechanism supports both strong and weak validation. If a resource supports an ETag, it shall

use the RFC7232-defined ETag.

This specification does not mandate a particular algorithm for ETag creation, but ETags should be highly

collision-free.

An ETag can be:

• A hash

• A generation ID

• A time stamp

• Some other value that changes when the underlying object changes

If a client calls PUT or PATCH to update a resource, it should include an ETag from a previous GET in the

HTTP If-Match or If-None-Match header. If a service supports the return of the ETag header on a

resource, it may respond with the HTTP 428 Precondition Required status code if the If-Match

or If-None-Match header is missing from the PUT or PATCH request for the same resource, as

specified in RFC6585.

In addition to the return of the ETag property on each resource, a Redfish Service should return the ETag

header on:

• A client PUT, POST, or PATCH operation

• A GET operation for an individual resource

The format of the ETag header is:

Redfish Specification DSP0266

30 Published Version 1.11.2

ETag: <string>

14. Protocol version

The protocol version is separate from the resources' version or the Redfish schema version that the

resources support.

Each Redfish protocol version is strongly typed by using the URI of the Redfish Service in combination

with the resource obtained at that URI, called the ServiceRoot resource.

The root URI for this version of the Redfish protocol shall be /redfish/v1/.

The URI defines the major version of the protocol.

The RedfishVersion property of the ServiceRoot resource defines the protocol version, which

includes the major version, minor version, and errata version of the protocol, as defined in the Redfish

schema for that resource.

The protocol version is a string in the format:

MajorVersion.MinorVersion.ErrataVersion

where

Variable Type Version Description

MajorVersion Integer Major Backward-compatible class change.

MinorVersion Integer Minor

Minor update. Redfish introduces functionality but

does not remove any functionality.

The minor version preserves compatibility with earlier

minor versions.

ErrataVersion Integer Errata Fix to the earlier version.

Any resource that a client discovers through hyperlinks that the Service Root or any Service Root-

referenced service or resource returns shall conform to the same protocol version that the Service Root

supports.

A GET operation on the /redfish resource shall return this response body:

DSP0266 Redfish Specification

Version 1.11.2 Published 31

{

"v1": "/redfish/v1/"

}

15. Redfish-defined URIs and relative reference rules

A Redfish Service shall support these Redfish-defined URIs:

URI Returns

/redfish
The version. A major update that does not preserve compatibility with

earlier minor versions.

/redfish/v1/ The Redfish Service Root.

/redfish/v1/

odata
The Redfish OData service document.

/redfish/

v1/$metadata
The Redfish metadata document.

A Redfish Service should support these Redfish-defined URIs:

URI Returns

/redfish/v1/openapi.yaml The Redfish OpenAPI YAML document.

In addition, the service shall process the following URI without a trailing slash in one of these ways:

• Redirect it to the associated Redfish-defined URI.

• Treat it as the equivalent URI to the associated Redfish-defined URI:

URI Associated Redfish-defined URI

/redfish/v1 /redfish/v1/

/redfish/ /redfish

All other Redfish Service-supported URIs shall match the resource URI patterns definitions, except the

supplemental resources that the @Redfish.Settings, @Redfish.ActionInfo, and

@Redfish.CollectionCapabilities payload annotations reference. The client shall treat the URIs

Redfish Specification DSP0266

32 Published Version 1.11.2

for these supplemental resources as opaque.

All Redfish Service-supported URIs are reserved for future standardization by DMTF and DMTF alliance

partners, except OEM extension URIs, which shall conform to the OEM resource URI requirements.

All relative references that the service uses shall start with either:

• A double forward slash (//) and include the authority (network-path), such as

//mgmt.vendor.com/redfish/v1/Systems.

• A single forward slash (/) and include the absolute-path, such as /redfish/v1/Systems.

For details, see RFC3986.

DSP0266 Redfish Specification

Version 1.11.2 Published 33

Service requests

This clause describes the requests that clients can send to Redfish Services.

16. Request headers

The HTTP Specification defines headers for request messages. The following table defines those

headers and their requirements for Redfish Services and clients.

For Redfish Services:

• Redfish Services shall process the headers in the following table as defined by the HTTP 1.1

Specification if the value in the Service requirement column is Yes, or if the value is

Conditional under the conditions noted in the Description column.

• Redfish Services should process the headers in the following tables as defined by the HTTP 1.1

Specification if the value in the Service requirement column is No.

For Redfish clients (sending the HTTP requests):

• Redfish clients shall include the headers in the following table as defined by the HTTP 1.1

Specification if the value in the Client requirement column is Yes, or if the value is Conditional

under the conditions noted in the Description column.

• Redfish clients should transmit the headers in the following tables as defined by the HTTP 1.1

Specification if the value in the Client requirement column is No.

Header
Service

requirement

Client

requirement

Supported

values
Description

Accept Yes No RFC7231

Communicates to the server the media

type or types that this client is prepared

to accept.

Services shall support resource

requests with Accept header values of

application/json or

application/

Redfish Specification DSP0266

34 Published Version 1.11.2

Header
Service

requirement

Client

requirement

Supported

values
Description

json;charset=utf-8.

Services shall support XML metadata

requests with Accept header values of

application/xml or application/

xml;charset=utf-8.

Services shall support OpenAPI YAML

schema requests with Accept header

values of application/yaml or

application/

yaml;charset=utf-8 or

application/vnd.oai.openapi or

application/

vnd.oai.openapi;charset=utf-8.

Services shall support SSE requests

with Accept header values of text/

event-stream or text/event-

stream;charset=utf-8.

Services shall support any request with

Accept header values of

application/*,

application/*;charset=utf-8,

/, or */*;charset=utf-8.

Accept-

Encoding
No No RFC7231

Indicates whether the client can handle

gzip-encoded responses.

If a service cannot send an acceptable

response to a request with this header,

it shall respond with the HTTP 406

Not Acceptable status code.

If the request omits this header, the

service shall not return gzip-encoded

DSP0266 Redfish Specification

Version 1.11.2 Published 35

Header
Service

requirement

Client

requirement

Supported

values
Description

responses.

Accept-

Language
No No RFC7231

The languages that the client accepts in

the response.

If the request omits this header, uses

the service's default language for the

response.

Authorization Conditional Conditional RFC7617

Required for HTTP basic

authentication.

A client can access unsecured

resources without this header on

systems that support basic

authentication.

Content-

Length
No No RFC7231

The size of the message body.

To indicate the size of the body, a client

can use the Transfer-Encoding:

chunked header.

If a service needs to use Content-

Length and does not support

Transfer-Encoding, it responds

with the HTTP 406 Not Acceptable

status code.

Content-Type Conditional Conditional RFC7231

The request format. Required for

operations with a request body.

Services shall accept the Content-

Redfish Specification DSP0266

36 Published Version 1.11.2

Header
Service

requirement

Client

requirement

Supported

values
Description

Type header set to either

application/json or

application/

json;charset=utf-8.

It is recommended that clients use

these values in requests because other

values can cause an error.

Host Yes No RFC7230
Enables support of multiple origin hosts

at a single IP address.

If-Match Conditional No RFC7232

To ensure that clients update the

resource from a known state, PUT and

PATCH requests for resources for

which a service returns ETags shall

support If-Match.

While not required for clients, it is highly

recommended for PUT and PATCH

operations.

If-None-Match No No RFC7232

A service only returns the resource if

the current ETag of that resource does

not match the ETag sent in this header.

If the ETag in this header matches the

resource's current ETag, the GET

operation returns the HTTP 304 Not

Modified status code.

Last-Event-ID No No
HTML5

SSE

The event source's last id field from

the SSE stream. Requests history

DSP0266 Redfish Specification

Version 1.11.2 Published 37

Header
Service

requirement

Client

requirement

Supported

values
Description

event data.

See Server-Sent Events.

Max-Forwards No No RFC7231

Limits gateway and proxy hops.

Prevents messages from remaining in

the network indefinitely.

OData-

MaxVersion
No No 4.0

The maximum OData version that an

OData-aware client understands.

OData-Version Yes No 4.0

The OData version.

Services shall reject requests that

specify an unsupported OData version.

If a service encounters an unsupported

OData version, it should reject the

request with the HTTP 412

Precondition Failed status code.

Origin Yes No

W3C

CORS,

Section

5.7

Enables web applications to consume a

Redfish Service while preventing CSRF

attacks.

User-Agent Yes No RFC7231

Traces product tokens and their

versions.

The header can list multiple product

tokens.

Redfish Specification DSP0266

38 Published Version 1.11.2

Header
Service

requirement

Client

requirement

Supported

values
Description

Via No No RFC7230

Defines the network hierarchy and

recognizes message loops.

Each pass inserts its own Via header.

Redfish Services shall understand and be able to process the headers in the following table as defined by

this specification if the value in the Required column is Yes.

Header
Service

requirement

Client

requirement

Supported

values
Description

X-

Auth-

Token

Yes Conditional

Opaque

encoded

octet

strings

Authenticates user sessions.

The token value shall be

indistinguishable from random.

While services shall support this

header, a client can access

unsecured resources without

establishing a session.

17. GET (read requests)

The GET operation retrieves resources from a Redfish Service. Clients make a GET request to the

individual resource URI. Clients may obtain the resource URI from published sources, such as the

OpenAPI document, or from a resource identifier property in a previously retrieved resource response,

such as the links property.

The service shall return the resource representation using one of the media types listed in the Accept

header, subject to the requirements of the media types. If the Accept header is absent, the service shall

return the resource's representation as application/json. Services may, but are not required to,

support the convention of retrieving individual properties within a resource by appending a segment

containing the property name to the URI of the resource.

• The HTTP GET operation shall retrieve a resource without causing any side effects.

• The service shall ignore the content of the body on a GET.

• The GET operation shall be idempotent in the absence of outside changes to the resource.

DSP0266 Redfish Specification

Version 1.11.2 Published 39

17.1. Resource collection requests

Clients retrieve a resource collection by making a GET request to the resource collection URI. The

response includes the resource collection's properties and an array of its members.

No requirements are placed on implementations to return a consistent set of members when a series of

requests that use paging query parameters are made over time to obtain the entire set of members.

These calls can result in missed or duplicate elements if multiple GETs use paging to retrieve the

Members array instances.

• Clients shall not make assumptions about the URIs for the members of a resource collection.

• Retrieved resource collections shall always include the count property to specify the total

number of entries in its Members array.

• Regardless of the next link property or paging, the count property shall return the total number of

resources that the Members array references.

A subset of the members can be retrieved using client paging query parameters.

A service may not be able to return all of the contents of a resource collection request in a single

response body. In this case, the response can be paged by the service. If a service pages a response to a

resource collection request, the following rules shall apply:

• Responses may contain a subset of the full resource collection's members.

• Individual members shall not be split across response bodies.

• A next link annotation shall be supplied in the response body with the URI to the next set of

members in the collection.

• The next link property shall adhere to the rules in the Next link property clause.

• GET Operations on the next link shall return the subsequent section of the resource collection

response.

17.2. Service Root request

The root URL for Redfish version 1.x services shall be /redfish/v1/.

The service returns the ServiceRoot resource, as defined by this specification, as a response for the

root URL.

Services shall not require authentication to retrieve the Service Root and /redfish resources.

17.3. OData service and metadata document requests

Redfish Services expose two OData-defined documents at specific URIs to enable generic OData clients

to navigate the Redfish Service.

Redfish Specification DSP0266

40 Published Version 1.11.2

• Service shall expose an OData metadata document at the /redfish/v1/$metadata URI.

• Service shall expose an OData service document at the /redfish/v1/odata URI.

• Service shall not require authentication to retrieve the OData metadata document or the OData

service document.

18. Query parameters

To paginate, retrieve subsets of resources, or expand the results in a single response, clients can include

the query parameters. Some query parameters apply only to resource collections.

Services:

• Shall only support query parameters on GET operations.

• Should support the $top, $skip, only, and excerpt query parameters.

• May support the $expand, $filter, and $select query parameters.

• Shall include the ProtocolFeaturesSupported object in the Service Root, if the service

supports query parameters.

◦ This object indicates which parameters and options have been implemented.

• Shall ignore unknown or unsupported query parameters that do not begin with $.

• Shall use the & operator to separate multiple query parameters in a single request.

Services shall return:

• The HTTP 501 Not Implemented status code for any unsupported query parameters that

start with $.

• An extended error that indicates the unsupported query parameters for this resource.

• The HTTP 400 Bad Request status code for any query parameters that contain values that

are invalid, or values applied to query parameters without defined values, such as excerpt or

only.

Services should return:

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnResource

message from the Base Message Registry for any implemented query parameters that are not

supported on a resource in the request.

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnResource

message from the Base Message Registry for any supported query parameters that apply only

to resource collections but are used on singular resources. This includes query parameters such

as $filter, $top, $skip, and only.

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnOperation

message from the Base Message Registry for any supported query parameters on operations

other than GET.

DSP0266 Redfish Specification

Version 1.11.2 Published 41

The response body shall reflect the evaluation of the query parameters in this order:

• Prior to service-side pagination: $filter, $skip, $top

• After applying any service-side pagination: $expand, $select

Query parameter Description and example

excerpt

Returns a subset of the resource's properties that match the defined

Excerpt schema annotation.

If no Excerpt schema annotation is defined for the resource, the entire

resource is returned.

Example:

https://resource?excerpt

$expand=<string>

Returns a hyperlink and its contents in-line with retrieved resources, as if a

GET call response was included in-line with that hyperlink.

See The $expand query parameter.

Example:

https://resource?$expand=*($levels=3)

https://resourcecollection?$expand=.($levels=1)

$filter=<string>

Applies to resource collections. Returns a subset of collection members

that match the $filter expression.

See The $filter query parameter.

Example:

https://resourcecollection?$filter=SystemType eq

'Physical'

only Applies to resource collections. If the target resource collection contains

Redfish Specification DSP0266

42 Published Version 1.11.2

Query parameter Description and example

exactly one member, clients can use this query parameter to return that

member's resource.

If the collection contains either zero members or more than one member,

the response returns the resource collection, as expected.

Services should return the HTTP 400 Bad Request with the

QueryCombinationInvalid message from the Base Message Registry

if only is being combined with other query parameters.

Example:

https://resourcecollection?only

$select=<string>

Returns a subset of the resource's properties that match the $select

expression.

See The $select query parameter.

Example:

https://resource?$select=SystemType,Status

$skip=<integer>

Applies to resource collections. Returns a subset of the members in a

resource collection, or an empty set of members if the $skip value is

greater than or equal to the member count. This paging query parameter

defines the number of members in the resource collection to skip.

Example:

https://resourcecollection?$skip=5

$top=<integer>

Applies to resource collections. Defines the number of members to show

in the response.

Minimum value is 0, though a value of 0 will return an empty set of

members.

DSP0266 Redfish Specification

Version 1.11.2 Published 43

Query parameter Description and example

Example:

https://resourcecollection?$top=30

18.1. The $expand query parameter

The $expand query parameter enables a client to request a response that includes not only the

requested resource, but also includes the contents of the subordinate or hyperlinked resources. The

definition of this query parameter follows the OData Protocol Specification.

The $expand query parameter has a set of possible options that determine which hyperlinks in a

resource are included in the expanded response. Some resources may already be expanded due to the

resource's schema annotation AutoExpand, such as the Temperature object in the Thermal resource.

The Redfish-supported options for the $expand query parameter are listed in the following table. The

service may implement some of these options but not others. Any other supported syntax for $expand is

outside the scope of this specification.

Option Description Example

asterisk (*)

Shall expand all hyperlinks, including

those in payload annotations, such as

@Redfish.Settings,

@Redfish.ActionInfo, and

@Redfish.CollectionCapabilities.

https://resource?$expand=*

$levels

Number of levels the service should

cascade the $expand operation.

The default level shall be 1.

For example, $levels=2 expands both:

• The hyperlinks in the current

resource (level 1).

• The hyperlinks in the resulting

expanded resources (level 2).

https://resourcecollection?$expand=.($levels=2)

Redfish Specification DSP0266

44 Published Version 1.11.2

Option Description Example

period (.)

Shall expand all hyperlinks not in any

links property instances of the resource,

including those in payload annotations,

such as @Redfish.Settings,

@Redfish.ActionInfo, and

@Redfish.CollectionCapabilities.

https://resourcecollection?$expand=.

tilde (~)
Shall expand all hyperlinks found in all

links property instances of the resource.
https://resourcecollection?$expand=~

Examples of $expand usage include:

• GET of a SoftwareInventoryCollection.

With $expand, the client can request multiple SoftwareInventory collection member

resources in one request rather than fetching them one at a time.

• GET of a ComputerSystem.

With $levels, a single GET request can include the subordinate resource collections, such as

Processors and Memory.

• GET all UUIDs in members of the ComputerSystem collection.

To accomplish this result, include both $select and $expand on the URI.

The syntax is GET /redfish/v1/Systems?$select=UUID&$expand=.($levels=1)

When services execute $expand, they may omit some of the referenced resource's properties.

When clients use $expand, they should be aware that the payload may increase beyond what can be

sent in a single response.

If a service cannot return the payload due to its size, it shall return the HTTP 507 Insufficient

Storage status code.

If a service cannot return the payload corresponding to an individual member of a resource collection, it

should return the @odata.id property for that member and should return extended information indicating

the reason that member was not returned, such as when a provider internal to the service returns an error

or times out.

The following is an example showing the RoleCollection resource being expanded with the level set

to 1:

DSP0266 Redfish Specification

Version 1.11.2 Published 45

{

"@odata.id": "/redfish/v1/AccountService/Roles",

"@odata.type": "#RoleCollection.RoleCollection",

"Name": "Roles Collection",

"Members@odata.count": 3,

"Members": [

{

"@odata.id": "/redfish/v1/AccountService/Roles/Administrator",

"@odata.type": "#Role.v1_1_0.Role",

"Id": "Administrator",

"Name": "User Role",

"Description": "Admin User Role",

"IsPredefined": true,

"AssignedPrivileges": [

"Login",

"ConfigureManager",

"ConfigureUsers",

"ConfigureSelf",

"ConfigureComponents"

]

},

{

"@odata.id": "/redfish/v1/AccountService/Roles/Operator",

"@odata.type": "#Role.v1_1_0.Role",

"Id": "Operator",

"Name": "User Role",

"Description": "Operator User Role",

"IsPredefined": true,

"AssignedPrivileges": [

"Login",

"ConfigureSelf",

"ConfigureComponents"

]

},

{

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnly",

"@odata.type": "#Role.v1_1_0.Role",

"Id": "ReadOnly",

"Name": "User Role",

"Description": "ReadOnly User Role",

"IsPredefined": true,

"AssignedPrivileges": [

"Login",

"ConfigureSelf"

]

}

]

Redfish Specification DSP0266

46 Published Version 1.11.2

}

18.2. The $select query parameter

The $select query parameter indicates that the implementation should return a subset of the resource's

properties that match the $select expression. If a request omits the $select query parameter, the

response returns all properties by default. The definition of this query parameter follows the OData

Protocol Specification.

The $select expression shall not affect the resource itself.

The $select expression defines a comma-separated list of properties to return in the response body.

The syntax for properties in object types shall be the object and property names concatenated with a

slash (/).

An example of $select usage is:

GET /redfish/v1/Systems/1?$select=Name,SystemType,Status/State

When services execute $select, they shall return all requested properties of the referenced resource.

The @odata.id and @odata.type properties shall be in the response payload and contain the same

values as if $select was not performed. If the @odata.context property is supported, it shall be in the

response payload and should be in the Context property recommended format. If the @odata.etag

property is supported, it shall be in the response payload and contain the same values as if $select was

not performed.

Any other supported syntax for $select is outside the scope of this specification.

18.3. The $filter query parameter

The $filter parameter enables a client to request a subset of the resource collection's members

based on the $filter expression. The definition of this query parameter follows the OData Protocol

Specification.

The $filter query parameter defines a set of properties and literals with an operator.

A literal value can be:

• A string enclosed in single quotes.

DSP0266 Redfish Specification

Version 1.11.2 Published 47

• A number.

• A boolean value.

If the literal value does not match the data type for the specified property, the service should reject

$filter requests with the HTTP 400 Bad Request status code.

The $filter section of the OData ABNF Components Specification contains the grammar for the

allowable syntax of the $filter query parameter, with the additional restriction that only built-in filter

operations are supported.

The following table lists the Redfish-supported values for the $filter query parameter. Any other

supported syntax for $filter is outside the scope of this specification.

Value Description Example

()
Precedence grouping

operator.

(Status/State eq 'Enabled' and Status/Health

eq 'OK') or SystemType eq 'Physical'

and Logical and operator.
ProcessorSummary/Count eq 2 and

MemorySummary/TotalSystemMemoryGiB gt 64

eq
Equal comparison

operator.
ProcessorSummary/Count eq 2

ge
Greater than or equal to

comparison operator.
ProcessorSummary/Count ge 2

gt
Great than comparison

operator.
ProcessorSummary/Count gt 2

le
Less than or equal to

comparison operator.
MemorySummary/TotalSystemMemoryGiB le 64

lt
Less than comparison

operator.
MemorySummary/TotalSystemMemoryGiB lt 64

ne
Not equal comparison

operator.
SystemType ne 'Physical'

not
Logical negation

operator.
not (ProcessorSummary/Count eq 2)

or Logical or operator.
ProcessorSummary/Count eq 2 or

ProcessorSummary/Count eq 4

When evaluating expressions, services shall use the following operator precedence:

Redfish Specification DSP0266

48 Published Version 1.11.2

• Grouping

• Logical negation

• Relational comparison. gt, ge, lt, and le all have equal precedence.

• Equality comparison. eq and ne both have equal precedence.

• Logical and

• Logical or

If the service receives an unsupported $filter query parameter, it shall reject the request and return

the HTTP 501 Not Implemented status code.

19. HEAD

The HEAD method differs from the GET method in that it shall not return message body information.

However, the HEAD method completes the same authorization checks and returns all the same meta

information and status codes in the HTTP headers as a GET method.

Services may support the HEAD method to:

• Return meta information in the form of HTTP response headers.

• Verify hyperlink validity.

Services may support the HEAD method to verify resource accessibility.

Services shall not support any other use of the HEAD method.

The HEAD method shall be idempotent in the absence of outside changes to the resource.

Services shall reject HEAD requests that contain query parameters. Services should return the HTTP 400

Bad Request status code if provided with a query parameter in a HEAD request.

19.1. Data modification requests

To create, modify, and delete resources, clients issue the following operations:

• POST (create)

• PATCH (update)

• PUT (replace)

• DELETE (delete)

• POST (action) on the resource

The following clauses describe the success and error response requirements common to all data

modification requests.

DSP0266 Redfish Specification

Version 1.11.2 Published 49

19.2. Modification success responses

For create operations, the response from the service, after the create request succeeds, should be one of

these responses:

• The HTTP 201 Created status code with a body that contains the JSON representation of the

newly created resource after the request has been applied.

• The HTTP 202 Accepted status code with a Location header set to the URI of a task

monitor when the processing of the request requires additional time to be completed.

◦ After processing of the task is complete, the created resource may be returned in

response to a request to the task monitor URI with the HTTP 201 Created status

code.

• The HTTP 204 No Content status code with empty payload in the event that the service

cannot return a representation of the created resource.

For update, replace, and delete operations, the response from the service, after successful modification,

should be one of the following responses:

• The HTTP 200 OK status code with a body that contains the JSON representation of the

targeted resource after the modification has been applied, or, for the delete operation, a

representation of the deleted resource.

• The HTTP 202 Accepted status code with a Location header set to the URI of a task

monitor when the processing of the modification requires additional time.

◦ After processing of the task is complete, the modified resource may be returned in

response to a request to the task monitor URI with the HTTP 200 OK status code.

• The HTTP 204 No Content status code with an empty payload in the event that service

cannot return a representation of the modified or deleted resource.

For details on successful responses to action requests, see POST (action).

19.3. Modification error responses

If the resource exists but does not support the requested operation, services may return the HTTP 405

Method Not Allowed status code.

Otherwise, if the service returns a client 4XX or service 5XX status code, the service encountered an error

and the resource shall not have been modified or created as a result of the operation.

20. PATCH (update)

To update a resource's properties, the service shall support the PATCH method.

Redfish Specification DSP0266

50 Published Version 1.11.2

The request body defines the changes to make to one or more properties in the resource that the request

URI references. The PATCH request does not change any properties that are not in the request body. The

service shall ignore OData annotations in the request body, such as resource identifier, type, and ETag

properties. Services may accept a PATCH with an empty JSON object, which indicates that the service

should make no changes to the resource.

See the Modification success responses clause for behavior when the PATCH operation is successful.

To gain the protection semantics of an ETag, the service shall use the If-Match or If-None-Match

header and not the @odata.etag property value for that protection.

The implementation may reject the update on certain properties based on its own policies and, in this

case, not perform the requested update. For the following exception cases, services shall return the

following HTTP status codes and other information:

Exception case The service returns

Modify several properties where one or more

properties can never be updated, but at least

one property was successfully updated.

For example, when a property is read-only,

unknown, or unsupported.

• The HTTP 200 OK status code.

• A resource representation with a

message annotation that lists the non-

updatable properties.

Modify several properties where one or more

properties could not be updated due to

service-side errors, but at least one property

was successfully updated.

For example, a write failure for an EEPROM.

• The HTTP 200 OK status code.

• A resource representation with a

message annotation that lists the

properties that could not be updated due

to service-side errors.

Modify one or more properties where all

properties in the request can never be

updated, but the resource can be updated.

For example, a property that is read-only,

unknown, or unsupported.

• The HTTP 400 Bad Request status

code.

• An extended error response with a

messages annotation that show the non-

updatable properties.

A client PATCH request against a resource

where the resource or all properties in the

resource can never be updated.

• The HTTP 405 Method Not

DSP0266 Redfish Specification

Version 1.11.2 Published 51

Exception case The service returns

Allowed status code.

A client PATCH request against a resource

collection.

• The HTTP 405 Method Not

Allowed status code.

A client only provides OData annotations.

• The HTTP 400 Bad Request status

code with the NoOperation message

from the Base Message Registry or one

of the modification success responses.

In the absence of outside changes to the resource, the PATCH operation should be idempotent, although

the original ETag value may no longer match.

21. PATCH on array properties

The Array properties clause describes the three styles of array properties in a resource.

Within a PATCH request, the service shall accept null to remove an element, and accept an empty

object {} to leave an element unchanged. Array properties that use the fixed or variable length style

remove those elements, while array properties that use the rigid style replace removed elements with

null elements. A service may indicate the maximum size of an array by padding null elements at the

end of the array sequence.

When processing a PATCH request, the order of operations shall be:

• Modifications

• Deletions

• Additions

A PATCH request with fewer elements than in the current array shall remove the remaining elements of

the array.

For example, a fixed length-style Flavors array indicates that the service supports a maximum of six

elements, by padding the array with null elements, with four populated.

Redfish Specification DSP0266

52 Published Version 1.11.2

{

"Flavors": [

"Chocolate",

"Vanilla",

"Mango",

"Strawberry",

null,

null

]

}

A client could issue the following PATCH request to remove Vanilla, replace Strawberry with

Cherry, and add Coffee and Banana to the array, while leaving the other elements unchanged.

{

"Flavors": [

{},

null,

{},

"Cherry",

"Coffee",

"Banana"

]

}

After the PATCH operation, the resulting array is:

{

"Flavors": [

"Chocolate",

"Mango",

"Cherry",

"Coffee",

"Banana",

null

]

}

22. PUT (replace)

To completely replace a resource, services may support the PUT method. The service may add properties

DSP0266 Redfish Specification

Version 1.11.2 Published 53

to the response resource that the client omits from the request body, the resource definition requires, or

the service normally supplies.

The PUT operation should be idempotent in the absence of outside changes to the resource, with the

possible exception that the operation might change ETag values.

See the Modification success responses clause for behavior when the PUT operation is successful.

The following list contains the exception cases for PUT:

• If a service does not implement this method, the service shall return the HTTP 405 Method

Not Allowed status code.

• Services may reject requests that do not include properties that the resource definition (schema)

requires.

• If the client makes a PUT request against a resource collection, services should return the HTTP

405 Method Not Allowed status code.

23. POST (create)

To create a resource, services shall support the POST method on resource collections.

The POST request is submitted to the resource collection to which the new resource will belong. See the

Modification success responses clause for behavior when the POST operation is successful.

The body of the create request contains a representation of the object to create. The service may ignore

any service-controlled properties, such as Id, which would force the service to overwrite those properties.

Additionally, the service shall set the Location header in the response to the URI of the new resource.

• Submitting a POST request to a resource collection is equivalent to submitting the same request

to the Members property of that resource collection. Services that support the addition of

Members to a resource collection shall support both forms.

◦ For example, if a client adds a member to the resource collection at /redfish/v1/

EventService/Subscriptions, it can send a POST request to either /redfish/

v1/EventService/Subscriptions or /redfish/v1/EventService/

Subscriptions/Members.

• If the service does not enable creation of resources, the service shall return the HTTP 405

Method Not Allowed status code.

• The POST operation shall not be idempotent.

• Services may allow the inclusion of @Redfish.OperationApplyTime property in the request

body. See Operation apply time.

• Services should return the HTTP 400 Bad Request status code for requests containing

properties with the value null.

Redfish Specification DSP0266

54 Published Version 1.11.2

24. DELETE (delete)

To remove a resource, the service shall support the DELETE method. Resources subordinate to the

resource removed by a DELETE method are typically removed, as the contents of subordinate resources

are dependent on the parent resource. In some cases, related resources may also be relocated in the

resource tree based on their definition and usage. Other resources in the resource tree may also be

removed or incur side effects of a resource removal.

See the Modification success responses clause for behavior when the DELETE operation is successful.

• If the resource can never be deleted, the service shall return the HTTP 405 Method Not

Allowed status code.

• If the resource was already deleted, the service may return the HTTP 404 Not Found status

code or a success code.

• The service may allow the inclusion of the @Redfish.OperationApplyTime property in the

request body. See Operation apply time.

25. POST (Action)

Services shall support the POST method to send actions to resources.

• The POST operation may not be idempotent.

• Services may allow the inclusion of the @Redfish.OperationApplyTime property in the

request body. See Operation apply time.

To request actions on a resource, send the HTTP POST method to the URI of the action. The target

property in the resource's Actions property shall contain the URI of the action. The URI of the action

shall be in the format:

ResourceUri/Actions/QualifiedActionName

where

Variable Description

ResourceUri URI of the resource that supports the action.

Actions
Name of the property that contains the actions for a resource, as

defined by this specification.

QualifiedActionName Qualified name of the action. Includes the namespace.

DSP0266 Redfish Specification

Version 1.11.2 Published 55

To determine the available actions and the valid parameter values for those actions, clients can query a

resource directly.

Clients provide parameters for the action as a JSON object within the request body of the POST

operation. For information about the structure of the request and required parameters, see the Actions

property clause. Some parameter information may require that the client examine the Redfish schema

that corresponds to the resource.

The service may ignore unsupported parameters provided by the client. If an action does not have any

required parameters, the service should accept an empty JSON object in the HTTP body for the action

request.

To indicate the success or failure of the action request processing, the service may return a response with

one of the following HTTP status codes and additional information:

To indicate HTTP status code Additional information

The action

request

succeeds, and

the schema does

not contain a

response

definition.

200 OK

The JSON message body, as described in Error

responses, with a message that indicates success or

any additional relevant messages. If the action was

successfully processed and completed without errors,

warnings, or other notifications for the client, the

service should return the Success message from the

Base Message Registry in the code property in the

response body.

The action

request

succeeds, and

the schema

contains a

response

definition for the

action.

200 OK
The JSON body in the response conforms to the

action response defined in the schema.

The action

request

succeeds, the

schema does not

contain a

response

definition, and a

Location

header in the

201 Created

A Location response header set to the URI of the

created resource. The JSON message body, as

described in Error responses, with a message that

indicates success or any additional relevant

messages. If the action was successfully processed

and completed without errors, warnings, or other

notifications for the client, the service should return the

Success message from the Base Message Registry

in the code property in the response body.

Redfish Specification DSP0266

56 Published Version 1.11.2

To indicate HTTP status code Additional information

response

contains the URI

of a created

resource.

The action

request

succeeds, the

schema contains

a response

definition for the

action, and a

Location

header in the

response

contains the URI

of a created

resource.

201 Created

A Location response header set to the URI of the

created resource. The JSON body in the response

conforms to the action response defined in the

schema.

The action

request may

require extra time

to process.

202 Accepted
A Location response header set to the URI of a task

monitor.

The action

request

succeeds, and

the schema does

not contain a

response

definition.

204 No Content No JSON message body.

The client did not

provide all

required

parameters.

400 Bad

Request

The response may contain a JSON object, as

described in Error responses, which details the error

or errors.

The client

provides a

parameter that

the service does

not support, and

400 Bad

Request

The response may contain a JSON object, as

described in Error responses, which details the error

or errors.

DSP0266 Redfish Specification

Version 1.11.2 Published 57

To indicate HTTP status code Additional information

the service does

not ignore

unsupported

parameters.

An error was

detected and the

action request

was not

processed.

400 or greater
The response may contain a JSON object, as

described in Error responses, which details the error

or errors.

If an action requested by the client will have no effect, such as performing a reset of a ComputerSystem

where the ResetType parameter is set to On and the ComputerSystem is already On, the service

should respond with the HTTP 200 OK status code and return the NoOperation message from the

Base Message Registry.

Example successful action response:

{

"error": {

"code": "Base.1.8.Success",

"message": "Successfully Completed Request",

"@Message.ExtendedInfo": [

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.Success",

"Message": "Successfully Completed Request",

"Severity": "OK",

"MessageSeverity": "OK",

"Resolution": "None"

}

]

}

}

26. Operation apply time

Services may accept the @Redfish.OperationApplyTime annotation in the POST (create), DELETE

(delete), or POST (action) request body. This annotation enables the client to control when an operation is

carried out.

Redfish Specification DSP0266

58 Published Version 1.11.2

For example, if the client wants to delete a particular Volume resource, but can only safely do so when a

reset occurs, the client can use this annotation to instruct the service to delete the Volume on the next

reset.

If multiple operations are pending, the service shall process them in the order in which the service

receives them.

Services that support the @Redfish.OperationApplyTime annotation for create and delete

operations on a resource collection shall include the @Redfish.OperationApplyTimeSupport

response annotation for the resource collection.

The following example response for a resource collection supports the

@Redfish.OperationApplyTime annotation in the create and delete requests:

{

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes",

"@odata.type": "#VolumeCollection.VolumeCollection",

"Name": "Storage Volume Collection",

"Description": "Storage Volume Collection",

"Members@odata.count": 2,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/1"

},

{

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2"

}

],

"@Redfish.OperationApplyTimeSupport": {

"@odata.type": "#Settings.v1_2_0.OperationApplyTimeSupport",

"SupportedValues": ["Immediate", "OnReset"]

}

}

In the previous example, a client can annotate their create request body on the VolumeCollection

itself, or a delete operation on the Volumes within the VolumeCollection.

The following sample request deletes a Volume on the next reset:

DELETE /redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2 HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

DSP0266 Redfish Specification

Version 1.11.2 Published 59

{

"@Redfish.OperationApplyTime": "OnReset"

}

Services that support the @Redfish.OperationApplyTime annotation for an action shall include the

@Redfish.OperationApplyTimeSupport response annotation for the action.

The following example response for a ComputerSystem resource supports the

@Redfish.OperationApplyTime annotation in the reset action request:

{

"@odata.id": "/redfish/v1/Systems/1",

"@odata.type": "#ComputerSystem.v1_5_0.ComputerSystem",

"Actions": {

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

],

"@Redfish.OperationApplyTimeSupport": {

"@odata.type": "#Settings.v1_2_0.OperationApplyTimeSupport",

"SupportedValues": ["Immediate", "AtMaintenanceWindowStart"],

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",

"MaintenanceWindowDurationInSeconds": 600,

"MaintenanceWindowResource": {

"@odata.id": "/redfish/v1/Systems/1"

}

}

}

},

...

}

In the previous example, a client can annotate their reset action request body on the ComputerSystem

in the payload.

The following sample request completes a reset at the start of the next maintenance window:

Redfish Specification DSP0266

60 Published Version 1.11.2

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"ResetType": "ForceRestart",

"@Redfish.OperationApplyTime": "AtMaintenanceWindowStart"

}

Services that support the @Redfish.OperationApplyTime annotation for a resource collection or

action shall create a task, and respond with the HTTP 202 Accepted status code with a Location

header set to the URI of a task monitor, if the client's request body contains

@Redfish.OperationApplyTime in the request.

The Settings Redfish schema defines the structure of the

@Redfish.OperationApplyTimeSupport object and the @Redfish.OperationApplyTime

annotation value.

27. Deep operations

Implementations may support operations that modify the current resource as well as subordinate

resources. These operations are known as deep operations. They give the client the ability to modify

more than one resource with a single operation.

The following types of deep operations are defined by this specification:

Operation Description Example

Deep

PATCH

(update)

Modify a resource and one

or more subordinate

resources.

Modify a ComputerSystem resource as well as

subordinate Storage and NetworkAdapter

resources.

Deep

POST

(create)

Create multiple resources in

a resource collection.
Create ManagerAccount resources.

• Services that support deep PATCH for updating resources shall set the value of the DeepPATCH

property in the DeepOperations property in the ProtocolFeaturesSupported property

within the service root to true.

• Services that support deep POST for creating resources shall set the value of the DeepPOST

property in the DeepOperations property in the ProtocolFeaturesSupported property

DSP0266 Redfish Specification

Version 1.11.2 Published 61

within the service root to true.

• The Members property in resource collections shall not be removed when using a deep PATCH.

• Action URIs shall not support deep POST operations.

• If the service supports deep operations, the MaxLevels property in the DeepOperations

property in the ProtocolFeaturesSupported property in the service root shall indicate the

maximum number of levels that the service supports for deep operations.

• To request deep operations on a resource, send the HTTP method to the deep operation URI of

the resource. The URI for deep operations on any resource shall be in the format:

ResourceUri.Deep.

• The schema used for validating the root level of the request body shall be the schema of the

resource in the resource URI.

◦ The subordinate resources included in the request body shall be validated against their

corresponding schema.

The body of deep operations contains the resource being modified as well as the subordinate resources

being modified. This resource can be a collection or a single instance. These resources could be

subordinate resources, subordinate resource collections, or subordinate members of resource collections.

The client can omit properties from the request such as those it does not want to modify or that the

service controls. Requests that include references to multiple instances, such as members of a collection,

shall include the Members property as part of the request body.

In order to determine which members of subordinate resource collections are to be modified by a deep

PATCH, services shall use the @odata.id property provided by the client to identify the member of the

resource collection to be modified.

Clients may provide the @odata.etag property in subordinate resources being modified by a deep

PATCH. If the If-Match or If-None-Match header is specified in the request, the service shall

compare the ETag in the request header with the ETag of the resource specified by the URI. If this check

passes, then the operation can proceed using the @odata.etag values contained in the body of the

subordinate resources. The operation on each subordinate resource shall be performed independently in

this case, where some subordinate values that pass the condition check proceed and the resources that

fail do not proceed. In this case, annotated extended information shall be included in the subordinate

resource representation of the response.

Failure semantics for deep operations are similar to that of other operations of similar type. If any

properties in a deep PATCH operation succeeded, then the result is a 200 OK with the results returned in

the response, and the service should include extended information indicating warnings or errors. For a

deep POST operation, if any member of the collection was created then a 201 Created shall be

returned, and any members that were not created should have extended information in their place holders

with sufficient identifying information, such as returning all of the properties provided in the POST request

body for that member, as well as extended information indicating why the creation was not successful.

When performing a deep POST, the value of the Location header shall be that of one of the URIs

created and should be that of one of the least subordinate URIs, such as that of a ComputerSystem

Redfish Specification DSP0266

62 Published Version 1.11.2

resource and not one of the devices subordinate to the ComputerSystem resource.

Deep POST shall not be allowed on the Sessions Collection.

The following is an example of a deep PATCH showing the RoleCollection resource with two

members being modified:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"Members": [

{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",

"AssignedPrivileges": [

"Login",

"ConfigureComponents"

]

},

{

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",

"AssignedPrivileges": [

"Login"

]

}

]

}

The following is an example of a deep POST showing the RoleCollection resource with two members

being created:

POST /redfish/v1/AccountService/Roles.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"Members": [

{

"RoleId": "OperatorRestricted",

"AssignedPrivileges": [

"Login",

"ConfigureComponents"

DSP0266 Redfish Specification

Version 1.11.2 Published 63

]

},

{

"RoleId": "ReadOnlyRestricted",

"AssignedPrivileges": [

"Login"

]

}

]

}

The following is an example of a deep PATCH showing a ComputerSystem resource where there is a

request to modify its asset tag and BIOS settings:

PATCH /redfish/v1/Systems/47832.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"AssetTag": "Inventory Tag 12394783431",

"Bios": {

"@odata.id": "/redfish/v1/Systems/47832/Bios",

"@Redfish.Settings": {

"SettingsObject": {

"@odata.id": "/redfish/v1/Systems/1/Bios/SD",

"Attributes": {

"AdminPhone": "(123) 456-789",

"BootMode": "Uefi"

}

}

}

}

}

The following shows a deep PATCH operation with ETAGs:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

If-Match: <Collection ETag>

OData-Version: 4.0

Redfish Specification DSP0266

64 Published Version 1.11.2

{

"Members": [

{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",

"@odata.etag": "W/\"ABCDEFG\"",

"AssignedPrivileges": [

"Login",

"ConfigureComponents"

]

},

{

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",

"@odata.etag": "W/\"ABCDEFG\"",

"AssignedPrivileges": [

"Login"

]

}

]

}

The following is an example of a partial failure of a deep PATCH operation with ETags:

HTTP/1.1 200 OK

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

ETag: <Resource collection ETag>

OData-Version: 4.0

{

"Members": [

{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",

"@odata.etag": "W/\"ABCDEFG\"",

"AssignedPrivileges": [

"Login",

"ConfigureComponents"

]

},

{

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",

"@Message.ExtendedInfo": [

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.PreconditionFailed",

"RelatedProperties": [

DSP0266 Redfish Specification

Version 1.11.2 Published 65

"#/AssignedPrivileges"

]

}

]

}

]

}

Redfish Specification DSP0266

66 Published Version 1.11.2

Service responses

This clause describes the responses that Redfish services can send to clients.

28. Response headers

HTTP defines headers for use in response messages. The following table defines those headers and

their requirements for Redfish services:

• Redfish services shall return the HTTP 1.1 Specification-defined headers if the value in the

Required column is Yes.

• Redfish services should return the HTTP 1.1 Specification-defined headers if the value in the

Required column is No.

• Redfish clients shall be able to both understand and process all the HTTP 1.1 Specification-

defined headers.

Header Required Supported values Description

Access-

Control-

Allow-Origin

Yes
W3C CORS,

Section 5.1

Prevents or allows requests based on

originating domain. Prevents CSRF

attacks.

Allow Yes

POST, PUT,

PATCH, DELETE,

GET, HEAD

Shall be returned with the HTTP 405

(Method Not Allowed) status code to

indicate the valid methods for the

request URI. Shall be returned with any

GET or HEAD operation to indicate the

other allowable operations for this

resource.

Cache-

Control
Yes RFC7234

Shall be supported and indicates

whether a response can or cannot be

cached.

Content-

Encoding
No RFC7231

The encoding that has been performed

on the media type.

Content- No RFC7231 The size of the message body. An

DSP0266 Redfish Specification

Version 1.11.2 Published 67

Header Required Supported values Description

Length

optional means of indicating size of the

body uses Transfer-Encoding:

chunked, that does not use the

Content-Length header. If a service

does not support Transfer-Encoding

and needs Content-Length instead,

the service shall respond with the HTTP

411 Length Required status code.

Content-Type Yes RFC7231

The message body's representation

type.

Services shall specify a Content-Type

of application/json when returning

resources as JSON.

Services shall specify a Content-Type

of application/xml when returning

metadata as XML.

Services shall specify a Content-Type

of application/yaml or

application/vnd.oai.openapi

when returning OpenAPI schema as

YAML.

Services shall specify a Content-Type

of text/event-stream when

returning an SSE stream.

;charset=utf-8 shall be appended to

the Content-Type if specified in the

chosen media-type in the Accept

header for the request.

ETag Conditional RFC7232

An identifier for a specific version of a

resource, often a message digest. The

ETag header shall be included on

responses to GETs of

ManagerAccount resources.

Redfish Specification DSP0266

68 Published Version 1.11.2

Header Required Supported values Description

Link Yes RFC8288
Link headers shall be returned, as

described in the Link headers clause.

Location Conditional RFC7231

The URI of a newly created resource.

Shall be returned upon creation of a

resource. Location and X-Auth-

Token shall be included on responses

that create user sessions.

Max-Forwards No RFC7231

Limits gateway and proxy hops.

Prevents messages from remaining in

the network indefinitely.

OData-

Version
Yes 4.0

The OData version of the payload to

which the response conforms.

Retry-After No
RFC7231, Section

7.1.3

Informs a client how long to wait before

requesting the task information again.

Server No RFC7231

A product token and its version. Multiple

product tokens may be listed.

Note: Previous versions of the

Specification marked this header as

required. This has been changed as no

use cases for requiring it have been

identified.

Via No RFC7230

Defines the network hierarchy and

recognizes message loops. Each pass

inserts its own Via header.

WWW-

Authenticate
Yes RFC7617

Required for Basic and other optional

authentication mechanisms. For details,

see the Security details clause.

X-Auth-Token Yes
Opaque encoded

octet strings

Contains the authentication token for

user sessions. The token value shall be

indistinguishable from random.

DSP0266 Redfish Specification

Version 1.11.2 Published 69

29. Link header

The Link header provides metadata information on the accessed resource in response to a HEAD or

GET request. The metadata information can include hyperlinks from the resource and JSON Schemas

that describe the resource.

The following example shows the Link headers for a ManagerAccount with an Administrator role,

in addition to a Settings annotation:

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role

Link: <http://redfish.dmtf.org/schemas/Settings.json>

Link: </redfish/v1/JsonSchemas/ManagerAccount.v1_0_2.json>; rel=describedby

• The first Link header is an example of a hyperlink that comes from the resource. It describes

hyperlinks within the resource. This type of header is outside the scope of this specification.

• The second Link header is an example of an annotation Link header as it references the

JSON Schema that describes the annotation and does not have rel=describedby. This

example references the public copy of the annotation on the DMTF's Redfish schema repository.

• The third Link header is an example for the JSON Schema that describes the actual resource.

◦ Note that the URL can reference an unversioned JSON Schema because the

@odata.type in the resource indicates the appropriate version, or reference the

versioned JSON Schema, which according to previous normative statements need to

match the version in the @odata.type property of the resource.

A Link header containing rel=describedby shall be returned on GET and HEAD requests. If the

referenced JSON Schema is a versioned schema, it shall match the version contained in the value of the

@odata.type property returned in this resource.

A Link header satisfying annotations should be returned on GET and HEAD requests.

30. Status codes

HTTP defines status codes that appear in responses. The status codes themselves provide general

information about how the request was processed, such as whether the request was successful, if the

client provided bad information, or the service encountered an error when performing the request.

• When the service returns a status code in the 4XX or 5XX range, services should return an

extended error response in the response body to provide the client more meaningful and

deterministic error semantics.

• When the service returns a status code in the 2XX range and the response contains a

Redfish Specification DSP0266

70 Published Version 1.11.2

representation of a resource, services may use extended information to convey additional

information about the resource.

• Extended error messages shall not provide privileged information when authentication failures

occur.

Note: For security implications of extended errors, See Security details.

The following table lists HTTP status codes that have meaning or usage defined for a Redfish Service, or

are otherwise referenced by this specification. Other codes may be returned by the service as

appropriate, and their usage is implementation-specific. For usage and additional requirements imposed

by this specification, see the Description column.

• Clients shall understand and be able to process the status codes in the following table as

defined by the HTTP 1.1 Specification and constrained by additional requirements defined by

this specification.

• Services shall respond with the status codes in the following table as defined in description

column.

• Redfish Services should not return the HTTP 100 status code. Using the HTTP protocol for a

multipass data transfer should be avoided, except for the upload of extremely large data.

• If no other status code in the 4XX range is appropriate for client-side errors, the default status

code should be the HTTP 400 Bad Request status code.

• If no other status code in the 5XX range is appropriate for service-side errors, the default status

code should be the HTTP 500 Internal Server Error status code.

HTTP status code Description

200 OK Request completed successfully and includes a representation in its body.

201 Created
Request to create a resource completed successfully. The Location header

shall be set to the canonical URI for the newly created resource. The

response body may include a representation of the newly created resource.

202 Accepted

Request has been accepted for processing but the processing has not been

completed. The Location header shall be set to the URI of a task monitor

that can later be queried to determine the status of the operation. The

response body may include a representation of the Task resource.

204 No Content
The request succeeded, but no content is being returned in the body of the

response.

301 Moved

Permanently
Requested resource resides under a different URI.

302 Found Requested resource resides temporarily under a different URI.

DSP0266 Redfish Specification

Version 1.11.2 Published 71

HTTP status code Description

304 Not

Modified

Service has performed a conditional GET request where access is allowed

but the resource content has not changed. Either or both the If-Modified-

Since and If-None-Match headers initiate conditional requests to save

network bandwidth if no change has occurred. See HTTP 1.1, sections 14.25

and 14.26.

400 Bad

Request

Request could not be processed because it contains invalid information, such

as an invalid input field, or is missing a required value. The response body

shall return an extended error as defined in the Error responses clause.

401

Unauthorized
Authentication credentials included with this request are missing or invalid.

403 Forbidden

Service recognized the credentials in the request but those credentials do not

possess authorization to complete this request. This code is also returned

when the user credentials provided need to be changed before access to the

service can be granted. For details, see the Security details clause.

404 Not Found Request specified a URI of a resource that does not exist.

405 Method Not

Allowed

HTTP verb in the request, such as DELETE, GET, HEAD, POST, PUT, or

PATCH, is not supported for this request URI. The response shall include an

Allow header that provides a list of methods that the resource identified by

the URI in the client request supports.

406 Not

Acceptable

Accept header was specified in the request and the resource identified by

this request cannot generate a representation that corresponds to one of the

media types in the Accept header.

409 Conflict

Creation or update request could not be completed because it would cause a

conflict in the current state of the resources that the platform supports. For

example, a conflict occurred due to an attempt to set multiple properties that

work in a linked manner by using incompatible values.

410 Gone

Requested resource is no longer available at the service and no forwarding

address is known. This condition is expected to be considered permanent.

Clients with hyperlink editing capabilities should delete references to the URI

in the client request after user approval. If the service does not know or

cannot determine whether the condition is permanent, client should use the

HTTP 404 Not Found status code. This response is cacheable unless

otherwise indicated.

411 Length Request did not use the Content-Length header to specify the length of its

Redfish Specification DSP0266

72 Published Version 1.11.2

HTTP status code Description

Required
content but perhaps used the Transfer-Encoding: chunked header

instead. The addressed resource requires the Content-Length header.

412

Precondition

Failed

Precondition check, such as check of the OData-Version, If-Match, or

If-Not-Modified header, failed.

415

Unsupported

Media Type

Request specifies a Content-Type for the body that is not supported.

428

Precondition

Required

Request did not provide the required precondition, such as an If-Match or

If-None-Match header.

431 Request

Header Field

Too Large

Service is unwilling to process the request because either an individual

header field or the collection of all header fields are too large.

500 Internal

Server Error

Service encountered an unexpected condition that prevented it from fulfilling

the request. The response body shall return an extended error as defined in

the Error responses clause.

501 Not

Implemented

Service does not currently support the functionality required to fulfill the

request. This response is appropriate when the service does not recognize

the request method and cannot support the method for any resource.

503 Service

Unavailable

Service currently cannot handle the request due to temporary overloading or

maintenance of the service. A service may use this response to indicate that

the request URI is valid but the service is performing initialization or other

maintenance on the resource. It may also use this response to indicate the

service itself is undergoing maintenance, such as finishing initialization steps

after reboot of the service.

507

Insufficient

Storage

Service cannot build the response for the client due to the size of the

response.

31. OData metadata responses

OData metadata describes resources, resource collections, capabilities, and service-dependent behavior

DSP0266 Redfish Specification

Version 1.11.2 Published 73

to generic OData consumers with no specific understanding of this specification. Clients are not required

to request metadata if they already have sufficient understanding of the target service. For example,

clients are not required to request metadata to request and interpret a JSON representation of a resource

that this specification defines.

A client can access the OData metadata at the /redfish/v1/$metadata URI.

A client can access the OData service document at the /redfish/v1/odata URI.

31.1. OData $metadata

The OData metadata describes top-level service resources and resource types according to OData

Common Schema Definition Language. The OData metadata is represented as an XML document with

an Edmx root element in the http://docs.oasis-open.org/odata/ns/edmx namespace with an

OData version attribute set to 4.0.

The service shall use the application/xml or application/xml;charset=utf-8 MIME types to

return the OData metadata document as an XML document.

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:Schema elements go here -->

</edmx:Edmx>

31.1.1. Referencing other schemas

The OData metadata should include the namespaces for each of the Redfish resource types, along with

the RedfishExtensions.v1_0_0 namespace. Dynamic clients that reference the OData metadata

document leverage schema definitions that are referenced in order to understand the definitions of the

resources in the service. However, there are cases where it might not be practical to maintain an accurate

document, such as when resources are dynamically discovered by the service through devices that

support Redfish Device Enablement.

These references may use either:

• The standard URI for the published Redfish schema definitions, such as on

http://redfish.dmtf.org/schemas.

• A URI to a local version of the Redfish schema.

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml">

<edmx:Include Namespace="ServiceRoot"/>

<edmx:Include Namespace="ServiceRoot.v1_0_0"/>

Redfish Specification DSP0266

74 Published Version 1.11.2

</edmx:Reference>

...

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/VirtualMedia_v1.xml">

<edmx:Include Namespace="VirtualMedia"/>

<edmx:Include Namespace="VirtualMedia.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

</edmx:Reference>

The service's OData metadata document shall include an EntityContainer that defines the top-level

resources and resource collections.

31.1.2. Referencing OEM extensions

The OData metadata document may reference additional schema documents that describe OEM-specific

extensions that the service uses.

For example, the OData metadata document may reference custom types for additional resource

collections.

<edmx:Reference Uri="http://contoso.org/Schema/CustomTypes">

<edmx:Include Namespace="CustomTypes"/>

</edmx:Reference>

31.2. OData service document

The OData service document serves as a top-level entry point for generic OData clients. More information

about the OData service document can be found in the OData JSON Format Specification.

{

"@odata.context": "/redfish/v1/$metadata",

"value": [

{

"name": "Service",

"kind": "Singleton",

"url": "/redfish/v1/"

},

{

DSP0266 Redfish Specification

Version 1.11.2 Published 75

"name": "Systems",

"kind": "Singleton",

"url": "/redfish/v1/Systems"

},

...

]

}

The service shall use the application/json MIME type to return the OData service document as a

JSON object.

The JSON object shall contain the @odata.context context property set to /redfish/

v1/$metadata.

The JSON object shall include a value property set to a JSON array that contains an entry for the

Service Root and each resource that is a direct child of the Service Root.

Each JSON object entry includes:

Property Defines

name User-friendly resource name of the resource.

kind Type of resource. Value is Singleton for all cases defined by Redfish.

url Relative URL for the top-level resource.

32. Resource responses

Services use the application/json MIME type to return resources and resource collections as JSON

payloads. A service shall not break responses for a single resource into multiple results.

The format of these payloads is defined by the Redfish schema. For rules about the Redfish schema and

how it maps to JSON payloads, see the Data model and Schema definition languages clauses.

33. Error responses

HTTP status codes often do not provide enough information to enable deterministic error semantics. For

example, if a client makes a PATCH call and some properties do not match while others are not

supported, the HTTP 400 Bad Request status code does not tell the client which values are in error.

Error responses provide the client more meaningful and deterministic error semantics.

Redfish Specification DSP0266

76 Published Version 1.11.2

To provide the client with as much information about the error as possible, a Redfish service may provide

multiple error responses in the HTTP response. Additionally, the service may provide Redfish

standardized errors, OEM-defined errors, or both, depending on the implementation's ability to convey the

most useful information about the underlying error.

An extended error response, which is a single JSON object, defines the error responses, with an error

property, which contains the following properties.

Property Description

code
String. Defines a MessageId from the message registry. See the

MessageId format clause for the format of MessageId.

message
Displays a human-readable error message that corresponds to the

message in the message registry.

@Message.ExtendedInfo
Displays an array of message objects. Describes one or more error

messages.

See the Schema definition languages clause for references to the schema definitions of the error

response payload.

The @Message.ExtendedInfo property should be present in all error responses. If the

@Message.ExtendedInfo property is present, all information necessary to process the error should be

provided in the @Message.ExtendedInfo property. Clients should look for the

@Message.ExtendedInfo property for error processing first, and fallback on the code and message

properties if @Message.ExtendedInfo is not present.

The following sample error response contains two messages in the @Message.ExtendedInfo property

that describe two different errors. The message described by the code and message properties do not

provide actionable information for the client.

{

"error": {

"code": "Base.1.8.GeneralError",

"message": "A general error has occurred. See Resolution for information on

how to resolve the error.",

"@Message.ExtendedInfo": [

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.PropertyValueNotInList",

"RelatedProperties": [

"#/IndicatorLED"

],

DSP0266 Redfish Specification

Version 1.11.2 Published 77

"Message": "The value Red for the property IndicatorLED is not in the

list of acceptable values.",

"MessageArgs": [

"Red",

"IndicatorLED"

],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Choose a value from the enumeration list that the

implementation can support and resubmit the request if the operation failed."

},

{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.PropertyNotWritable",

"RelatedProperties": [

"#/SKU"

],

"Message": "The property SKU is a read only property and cannot be

assigned a value.",

"MessageArgs": [

"SKU"

],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Remove the property from the request body and resubmit

the request if the operation failed."

}

]

}

}

Redfish Specification DSP0266

78 Published Version 1.11.2

Data model

One of the key tenets of Redfish is the separation of protocol from the data model. This separation makes

the data both transport and protocol agnostic. By concentrating on the data transported in the payload of

the protocol (in HTTP, it is the HTTP body), Redfish can also define the payload in any encoding and the

data model is intended to be schema-language agnostic. While Redfish uses the JSON data-interchange

format, Redfish provides a common encoding type that ensures property naming conventions that make

development easier in JavaScript, Python, and other languages. This encoding type helps the Redfish

data model be more easily accessible in modern tools and programming environments.

The data model allows an OEM to extend the model by adding an OEM resource or extending a

resource.

This clause describes common data model, resource, and Redfish schema requirements.

34. Resources

A resource is a single entity. Services use the application/json MIME type to return resources as

JSON payloads.

Each resource shall be strongly typed and defined in a Redfish schema document, and identified in the

response payload by a unique type identifier property.

Responses for a single resource shall contain the following properties:

• @odata.id

◦ Registry resources are not required to provide @odata.id

• @odata.type

• Id

• Name

Responses may also contain other properties defined within the schema for that resource type.

Responses shall not include any properties not defined by that resource type.

35. Resource collections

A resource collection is a set of resources that share the same schema definition. Services use the

DSP0266 Redfish Specification

Version 1.11.2 Published 79

application/json MIME type to return resource collections as JSON payloads.

Resource collection responses shall contain the following properties:

• @odata.id

• @odata.type

• Name

• Members

• Members@odata.count

Responses for resource collections may contain the following properties:

• @odata.context

• @odata.etag

• Description

• Members@odata.nextLink

• Oem

Responses for resource collections shall not contain any other properties with the exception of payload

annotations.

36. OEM resources

OEMs and other third parties can extend the Redfish data model by creating resource types. This is

accomplished by defining an OEM schema for each resource type, and connecting instances of those

resources to the resource tree.

Companies, OEMs, and other organizations use the Oem property in resources, the links property, and

actions to define additional properties, hyperlinks, and actions for standard Redfish resources.

While the information and semantics of these extensions are outside of the standard, the schema

representing the data, the resource itself, and the semantics around the protocol shall conform to the

requirements in this specification. OEMs are encouraged to follow the design tenets and naming

conventions in this specification when defining OEM resources or properties.

37. Common data types

The following clause details the data types found throughout the Redfish data model.

Redfish Specification DSP0266

80 Published Version 1.11.2

37.1. Primitive types

The following are the primitive data types in the data model:

Type Description

Boolean A variable with a value of true or false.

Number
A number with optional decimal point or exponent. Number properties may restrict the

representation to an integer or a number with decimal point.

String A sequence of characters enclosed with double quotes (").

Array
A comma-separated set of the previous types enclosed with square braces ([and]).

See the Array properties clause.

Object
A set of properties enclosed with curly braces ({ and }). See the Structured properties

clause.

Null

The null value, which the service uses when it is unable to determine the property's

value due to an error or other temporary condition, or if the schema has requirements

for using null for other special conditions.

When receiving values from the client, services should support other valid representations of the data in

the specified JSON type. In particular, services should support valid integer and decimal values in

exponential notation and integer values that contain a decimal point with no non-zero trailing digits.

37.2. Empty string values

String properties should return an empty string ("") for properties configured by a user or external service

that have not been set to an initial value. This allows client software to identify the property as supported

by the service, and avoids the use of null, which indicates an error condition. For example, the

AssetTag property must be set by the end user, and therefore would return an empty string ("") until

assigned a value by the user, while a failure to read the stored AssetTag value due to a non-volatile

memory error would return null. To improve interoperability, implementations should avoid the use of

filler strings, such as N/A or <Empty>, to represent a value not set by a user.

37.3. GUID and UUID values

Globally Unique Identifier (GUID) and Universally Unique Identifier (UUID) values are unique identifier

strings and shall use the format:

([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})

DSP0266 Redfish Specification

Version 1.11.2 Published 81

37.4. Date-Time values

Date-Time values are strings according to the ISO 8601 extended format, including the time offset or UTC

suffix.

Date-Time values shall use the format:

YYYY-MM-DDThh:mm:ss[.SSS](Z|((+|-)HH:MM))

where

Variable or separator Description

YYYY Four-digit year.

MM Two-digit month (1 to 12).

DD Two-digit day (1 to 31).

T Time separator. Shall be a capital T.

hh Two-digit hour (0 to 23).

mm Two-digit minute (0 to 59).

ss Two-digit second (0 to 59).

SSS
Optional. Decimal fraction of a second. Shall be one or more digits where

the number of digits implies the precision.

Z Zero offset indicator. Shall be a capital Z.

HH Two-digit hour offset (0 to 23).

MM Two-digit minute offset (0 to 59).

For example, 2015-03-13T04:14:33+06:00 represents March 13, 2015 at 4:14:33 with a +06:00 time

offset.

When the time of day is unknown or serves no purpose, the service shall report 00:00:00Z for the time

of day value.

37.5. Duration values

Duration values are strings according to the ISO 8601 duration format, with the exception of not

Redfish Specification DSP0266

82 Published Version 1.11.2

expressing a representation for years, months, or weeks. Duration values shall use the format:

P[dD][T[hH][mM][s[.f]S]]

where

Variable Description

d Number of days.

h Number of hours.

m Number of minutes.

s Number of seconds.

f Fractional seconds.

Each field is optional and may contain more than one digit.

For example, the following values represent the following durations:

Value Duration

P90D Ninety days.

P3D Three days.

PT6H Six hours.

PT10S Ten seconds.

PT0.001S 0.001 seconds.

PT1H30M One hour and 30 minutes.

DEPRECATED: Duration values shall use the format:

P[yY][mM][wW][dD][T[hH][mM][s[.f]S]]. This definition allows for specifying years,

months, and weeks. ISO 8601 does not specify an exact value for the duration of a year or of a

month, which introduces interoperability challenges.

37.6. Reference properties

Reference properties provide a reference to another resource in the data model. Reference properties are

JSON objects that contain an @odata.id property. The @odata.id property value is the URI of the

DSP0266 Redfish Specification

Version 1.11.2 Published 83

referenced resource.

37.7. Non-resource reference properties

Non-resource reference properties provide a reference to services or documents that are not Redfish-

defined resources. These properties shall include the Uri term in their property name. For example,

AssemblyBinaryDataUri in the Assembly schema. The access protocol and data format of the

referenced URI may be defined in schema for that property. Non-resource reference properties that refer

to local HTTP/S targets shall follow the Redfish protocol, including use of Redfish sessions and access

control, unless otherwise specified by the property definition in schema.

37.8. Array properties

Array properties contain a set of values or objects, and appear as JSON arrays within a response body.

Array elements shall all contain values of the same data type.

There are three styles of arrays, regardless of the data type of the elements:

Array style Description

Fixed length
Contains a static number of elements. The property definition sets or the

implementation chooses the size of the array.

Variable length

Contains a variable number of elements. The array size is not specified and the

size varies among instances. The array size may change. This array style is the

most common style.

Rigid

The array index is meaningful. When elements are added to or removed from the

array, the elements do not change their position, or index, in the array. An

element that is removed from a rigid array shall be replaced by a null element

and all other elements shall remain at their current index.

Empty elements in a rigid array property shall be represented by null elements.

Any array property that uses this style shall indicate the rigid style in the long

description of its schema definition.

Services may pad an array property with null elements at the end of the sequence to indicate the array

size to clients. This is useful for small fixed length arrays, and for variable or rigid arrays with a restrictive

maximum size. Services should not pad array properties if the maximum array size is not restrictive. For

example, an array property typically populated with two elements, that a service limits to a maximum of 16

elements, should not pad the array with 14 null elements.

Redfish Specification DSP0266

84 Published Version 1.11.2

37.9. Structured properties

Structured properties are JSON objects within a response body.

Some structured properties inherit from the Resource.v1_0_0.ReferenceableMember definition.

Structured properties that follow this definition shall contain the MemberId and resource identifier

properties.

Because the definition of structured properties can evolve over time, clients need to be aware of the

inheritance model that the different structured property definitions use.

For example, the Location property definition in the Resource schema has gone through several

iterations since the Resource.v1_1_0 namespace was introduced, and each iteration inherits from the

earlier version so that existing references in other schemas can leverage the additions.

Structured property references need to be resolved for both local and external references.

A local reference is a resource that has a structured property in its own schema, such as

ProcessorSummary in the ComputerSystem resource. In these cases, the type property for the

resource is the starting point for resolving the structured property definition.

To find the latest applicable version, clients can step the version of the resource backwards.

For example, if a service returns #ComputerSystem.v1_4_0.ComputerSystem as the resource type,

a client can step backwards from ComputerSystem.v1_4_0, to ComputerSystem.v1_3_0, to

ComputerSystem.v1_2_0, and so on, until it finds the ProcessorSummary structured property

definition.

An external reference is a resource that has a property that references a definition found in a different

schema, such as the Location property in the Chassis resource.

In these cases, clients can use the latest version of the external schema file as a starting point to resolve

the structured property definition.

For example, if the latest version of the Resource schema is 1.6.0, a client can go backward from

Resource.v1_6_0, to Resource.v1_5_0, to Resource.v1_4_0, and so on, until it finds the

Location structured property definition.

37.10. Message object

37.10.1. Overview

A message object provides additional information about an object, property, or error response.

DSP0266 Redfish Specification

Version 1.11.2 Published 85

A message object is a JSON object with the following properties:

Property Type Required Defines

MessageId String Yes

The error or message. Do not confuse

this value with the HTTP status code.

Clients can use this code to access a

detailed message from a message

registry.

Message String No

The human-readable error message

that indicates the semantics associated

with the error. This shall be the

complete message, and not rely on

substitution variables.

RelatedProperties
An array of

JSON

pointers

No
The properties in a JSON payload that

the message describes.

MessageArgs
An array of

strings
No

The substitution parameter values for

the message. If the parameterized

message defines a MessageId, the

service shall include the MessageArgs

in the response.

MessageSeverity
String

(enumeration)
No

The severity of the error. Services can

replace the value of the

MessageSeverity property defined in

the message registry with a value more

applicable to the implementation.

Severity String No

The severity of the error. Services can

replace the value of the Severity

property defined in the message registry

with a value more applicable to the

implementation.

DEPRECATED: This property has been

deprecated in favor of

MessageSeverity.

Resolution String No The recommended actions to take to

Redfish Specification DSP0266

86 Published Version 1.11.2

Property Type Required Defines

resolve the error. Services can replace

the value of the Resolution property

defined in the message registry with a

service-defined resolution.

Each instance of a message object shall contain at least a MessageId, together with any applicable

MessageArgs, or a Message property that defines the complete human-readable error message.

A MessageId identifies a specific message that a message registry defines.

37.10.2. MessageId format

The MessageId property value shall be in the format:

RegistryName.MajorVersion.MinorVersion.MessageKey

where

Variable Description

RegistryName Name of the registry. The registry name shall be Pascal-cased.

MajorVersion Non-negative integer. The major version of the registry.

MinorVersion Non-negative integer. The minor version of the registry.

MessageKey
Human-readable key into the registry. The message key shall be Pascal-cased

and shall not include spaces, periods, or special characters.

To search the message registry for a message, the client can use the MessageId.

The message registry approach has advantages for internationalization because the registry can be

translated easily, and is lightweight for implementations because large strings need not be included with

the implementation.

The use of GeneralError from the Base Message Registry as a MessageId in ExtendedInfo is

discouraged. If no better message exists or the ExtendedInfo array contains multiple messages, use

GeneralError from the Base Message Registry only in the code property of the error object.

When an implementation uses GeneralError from the Base Message Registry in ExtendedInfo, the

implementation should include a service-defined value for the Resolution property with this error to

indicate how to resolve the problem.

DSP0266 Redfish Specification

Version 1.11.2 Published 87

38. Properties

Every property included in a Redfish response payload shall be defined in the schema for that resource.

The following attributes apply to all property definitions:

• Property names in the request and response payload shall match the casing of the Name

attribute value in the defining schema.

• Required properties shall always be returned in a response.

• Properties not returned from a GET operation indicate that the property is not supported by the

implementation, or by that particular resource instance. Differences in underlying product

support or configuration will vary among resource instances, and therefore the properties

returned by each instance will vary accordingly.

• If an implementation supports a property, it shall always provide a value for that property. If a

value is unknown at the time of the operation, due to an internal error, the current resource state,

or inaccessibility of the data, then the value of null is an acceptable value if supported by the

schema definition.

• Resource instances should omit properties if the underlying product or service does not provide

the function described by the property. For example, a chassis resource instance might not

provide a serial number, and therefore should omit the SerialNumber property, while other

chassis resource instances that have a serial number can provide this property.

• A service may implement a writable property as read-only.

This clause also contains a set of common properties across all Redfish resources. The property names

in this clause shall not be used for any other purpose.

38.1. Resource identifier (@odata.id) property

Registry resources in a response may include an @odata.id property. All other resources in a response

shall include an @odata.id property. The value of the identifier property shall be the resource URI.

38.2. Resource type (@odata.type) property

All resources in a response shall include an @odata.type type property. To support generic OData

clients, all structured properties in a response should include an @odata.type type property. The value

shall be a URL fragment that specifies the type of the resource and shall be in the format:

#Namespace.TypeName

where

Redfish Specification DSP0266

88 Published Version 1.11.2

Variable Description

Namespace
Full namespace name of the Redfish schema that defines the type. For Redfish

resources, the versioned namespace name.

TypeName Name of the resource type.

An example of a resource type value is #ComputerSystem.v1_0_0.ComputerSystem, where

ComputerSystem.v1_0_0 denotes the version 1.0.0 namespace of ComputerSystem, and the type

itself is ComputerSystem.

38.3. Resource ETag (@odata.etag) property

ETags enable clients to conditionally retrieve or update a resource. Resources should include an

@odata.etag property. For a resource, the value shall be the ETag.

38.4. Resource context (@odata.context) property

Responses for a single resource may contain an @odata.context property that describes the source of

the payload.

If the @odata.context property is present, it shall be the context URL that describes the resource,

according to OData Protocol.

The context URL for a resource should be in the format:

/redfish/v1/$metadata#ResourceType

where

Variable Description

ResourceType
Fully qualified name of the unversioned resource type. Redfish resource

definitions concatenate the resource type namespace with a period (.) followed

by the resource type.

For example, the following context URL specifies that the results show a single ComputerSystem

resource:

{

"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

DSP0266 Redfish Specification

Version 1.11.2 Published 89

...

}

The context URL for a resource may be in one of the other formats that OData Protocol specifies.

38.5. Id

The Id property of a resource uniquely identifies the resource within the resource collection that contains

it. The value of Id shall be unique across a resource collection. The Id property shall follow the definition

for Id in the Resource schema.

38.6. Name

The Name property conveys a human-readable moniker for a resource. The type of the Name property

shall be string. The value of Name is NOT required to be unique across resource instances within a

resource collection. The Name property shall follow the definition for Name in the Resource schema.

38.7. Description

The Description property conveys a human-readable description of the resource. The Description

property shall follow the definition for Description in the Resource schema.

38.8. MemberId

The MemberId property uniquely identifies an element within an array, where a reference property can

reference the element. The MemberId value shall be unique across the array. The MemberId property

shall follow the definition for MemberId in the Resource schema.

38.9. Count (Members@odata.count) property

The count property defines the total number of resource, or members, that are available in a resource

collection. The count property shall be named Members@odata.count and its value shall be the total

number of members available in the resource collection. The $top or $skip query parameters shall not

affect this count. If the number of members available in the resource collection is reduced due to filtering,

such as in response to the $filter query parameter, the count should be the total number of members

available in the resource collection after the filter is applied.

Redfish Specification DSP0266

90 Published Version 1.11.2

38.10. Members

The Members property of a resource collection identifies the members of the collection. The Members

property is required and shall be returned in the response for any resource collection. The Members

property shall be an array of JSON objects named Members. The Members property shall not be null.

Empty collections shall be an empty JSON array.

38.11. Next link (Members@odata.nextLink) property

The value of the Next Link property shall be an opaque URL to a resource, with the same @odata.type,

which contains the next set of partial members from the original operation. The Next Link property shall

only be present if the number of members in the resource collection is greater than the number of

members returned, and if the payload does not represent the end of the requested resource collection.

The Members@odata.count property value is the total number of resources available if the client

enumerates all pages of the resource collection.

38.12. Links

The Links property represents the hyperlinks associated with the resource, as defined by that resource's

schema definition. All associated reference properties defined for a resource shall be nested under the

links property. All directly (subordinate) referenced properties defined for a resource shall be in the root of

the resource.

The links property shall be named Links and contain a property for each related resource.

To navigate vendor-specific hyperlinks, the Links property shall also include an Oem property.

38.12.1. Reference to a related resource

A reference to a single resource is a JSON object that contains a single resource identifier property. The

name of this reference is the name of the relationship. The value of this reference is the URI of the

referenced resource.

{

"Links": {

"ManagedBy": {

"@odata.id": "/redfish/v1/Chassis/Encl1"

}

}

}

DSP0266 Redfish Specification

Version 1.11.2 Published 91

38.12.2. References to multiple related resources

A reference to a set of zero or more related resources is an array of JSON objects. The name of this

reference is the name of the relationship. Each element of the array is a JSON object that contains a

resource identifier property with the value of the URI of the referenced resource.

{

"Links": {

"Contains": [

{

"@odata.id": "/redfish/v1/Chassis/1"

},

{

"@odata.id": "/redfish/v1/Chassis/Encl1"

}

]

}

}

38.13. Actions property

The Actions property contains the actions supported by a resource.

38.13.1. Action representation

Each supported action is represented as a property nested under Actions. The unique name that

identifies the action is used to construct the property name.

This property name shall be in the format:

#ResourceType.ActionName

where

Variable Description

ResourceType Resource where the action is defined.

ActionName Name of the action.

The client may use this fragment to identify the action definition in the referenced Redfish schema

document.

Redfish Specification DSP0266

92 Published Version 1.11.2

The property for the action is a JSON object and contains the following properties:

• The target property shall be present, and defines the relative or absolute URL to invoke the

action.

• The title property may be present,and defines the action's name.

The OData JSON Format Specification defines the target and title properties.

To specify the list of supported values for a parameter, the service may include the

@Redfish.AllowableValues annotation.

For example, the following property defines the Reset action for a ComputerSystem:

{

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"title": "Computer System Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulRestart",

"GracefulShutdown",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

]

},

...

}

Given this, the client could invoke a POST request to /redfish/v1/Systems/1/Actions/

ComputerSystem.Reset with the following body:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"ResetType": "On"

}

The resource may provide a separate @Redfish.ActionInfo resource to describe the parameters and

DSP0266 Redfish Specification

Version 1.11.2 Published 93

values that a particular instance or implementation supports. Use the @Redfish.ActionInfo

annotation to specify the ActionInfo resource, which contains a URI to the @Redfish.ActionInfo

resource for the action. For details, see the Action info annotation clause.

38.13.2. Action responses

Response payloads for actions may contain a JSON body that is described by the schema definition for

the action. See the Schema definition languages clause for the representation of these definitions.

Actions that do not define a response body may provide an error response in the response payload.

38.14. Oem

The Oem property is used for extending standard resources with OEM extensions.

38.15. Status

The Status property represents the status of a resource. The Status property shall follow the definition

for Status in the Resource schema.

By having a common representation of status, clients can depend on consistent semantics. The Status

property is capable of indicating the current state, health of the resource, and the health of subordinate

resources.

39. Resource, schema, property, and URI naming
conventions

The Redfish interface is intended to be easily readable and intuitive. Thus, consistency helps the

consumer who is unfamiliar with a newly discovered property understand its use. While this is no

substitute for the normative information in the Redfish Specification and Redfish schema, the following

rules help with readability and client usage. In general, names in Redfish are designed and intended to be

human-readable and convey the meaning of the name, in context, without the need to consult schema

definitions or other documentation.

Standard Redfish resources defined and published in the repository, or those created by others and

republished, shall follow a set of naming conventions. These conventions are intended to ensure

consistent naming and eliminate naming collisions. The resource name is used to construct the type

property and the schema file name.

Standard Redfish properties follow similar naming conventions, and should use a common definition

when defined in multiple schemas across the Redfish data model. This consistency enables code re-use

across resources and increases interoperability. New resource definitions should leverage existing

Redfish Specification DSP0266

94 Published Version 1.11.2

property definitions whenever possible.

The naming rules for schemas, properties, and enumerations are as follows:

• Names shall be Pascal-cased. The first letter of each word in a name shall be uppercase and

spaces between words shall be removed. For example, ComputerSystem, PowerState, and

SerialNumber.

• Names shall not contain spaces or underscore characters. Names should not contain any

special characters that violate naming rules for supported schema description languages or

programming languages.

• Both characters should be capitalized for two-character acronyms. For example, IPAddress or

RemoteIP.

• Names constructed from a single acronym or mixed-case name, such as LDAP, PCIe, or SNMP,

should use the typical capitalization for that name.

• Names incorporating acronyms with three or more characters should follow the capitalization

used in related names for consistency. For example, EnableSNMPv1 and EnableSNMPv2

follow the pattern used for SNMP.

• Pascal-casing may be used for acronyms longer than two characters to improve readability,

especially when two or more acronyms appear together in a name, which should be avoided.

• Enumeration names should start with a letter and be followed by letters or numbers, in order to

conform to schema description language requirements. Underscore characters may be used to

replace other special characters, or to significantly improve readability, but this usage is

discouraged.

• Enumeration names should prioritize readability as they may appear unmodified on user

interfaces, whereas property or schema names should follow conventions and strive for

consistency.

Exceptions are allowed for the following cases:

• Well-known technology abbreviations, acronyms, or product names should follow their defined

capitalization. Examples include iSCSI, iSCSITarget, and iLO.

• OEM appears as Oem in schema and property names either alone or as a portion of a name, but

should be OEM when used alone as an enumeration value.

For properties that have units or other special meaning, append a unit identifier to the name. Examples

include:

• Bandwidth (Mbps). For example, PortSpeedMbps.

• CPU speed (Mhz). For example, ProcessorSpeedMhz.

• Memory size (MB). For example, MemoryMB.

• Counts of items (Count). For example, ProcessorCount or FanCount.

• The state of a resource (State). For example, PowerState.

• State values where work is in process. For example, Applying or ClearingLogic.

DSP0266 Redfish Specification

Version 1.11.2 Published 95

In addition, the following rules apply to Redfish schema-defined URIs:

• URI segments should generally follow the naming rules, and follow the name of the Redfish

schema that defines the resource located at each segment.

• URI segments for resource collections should use the plural form of the resource collection

schema name, with the Collection term omitted. For example, Processors for a

ProcessorCollection.

• For resources that contain hyperlinks to more than one resource or resource collection of the

same schema type, the URI segments should follow the name of the property that provides the

hyperlink, for clarity.

• If a hyperlink to a subordinate resource is not found at the root of the resource, the URI

segments should contain the property path. For example, for the Certificates hyperlink

found in ManagerNetworkProtocol within the HTTPS object, HTTPS should be one of the URI

segments.

40. Extending standard resources

In the context of this clause, the OEM term refers to any company, manufacturer, or organization that

provides or defines an extension to the DMTF-published schema and functionality for Redfish. All

Redfish-specified resources include an empty structured Oem property. Its value can encapsulate one or

more OEM-specified structured properties. This predefined placeholder can contain OEM-specific

property definitions.

40.1. OEM property format and content

Each property contained within the Oem property shall be a JSON object. The name of the object

(property) shall uniquely identify the OEM or organization that defines the properties contained by that

object. This is described in more detail in the following clause.

The OEM-specified object shall include a type property that provides the location of the schema and the

type definition for the property within that schema if the OEM-specified object:

• Is not contained in an array of objects.

• Is contained in the first object within an array of objects.

• In subsequent array members containing an OEM-specified object, whose type is different than

the first array member.

The Oem property can simultaneously hold multiple OEM-specified objects, including objects for more

than one company or organization.

The definition of any other properties that are contained within the OEM-specific object, along with the

functional specifications, validation, or other requirements for that content is OEM-specific and outside the

Redfish Specification DSP0266

96 Published Version 1.11.2

scope of this specification. While there are no Redfish-specified limits on the size or complexity of the

OEM-specified elements within an OEM-specified JSON object, it is intended that OEM properties

typically be used for only a small number of simple properties that augment the Redfish resource. If a

large number of objects or a large quantity of data compared to the size of the Redfish resource is to be

supported, the OEM should consider having the OEM-specified object point to a separate resource for

their extensions.

40.2. OEM property naming

The OEM-specified objects within the Oem property are named by using a unique OEM identifier for the

top of the namespace under which the property is defined. There are two specified forms for the identifier.

The identifier shall be either an ICANN-recognized domain name (including the top-level domain suffix),

with all dot (.) separators replaced with underscores (_), or an IANA-assigned Enterprise Number

prefixed with "EID_."

DEPRECATED: The identifier shall be either an ICANN-recognized domain name including the

top-level domain suffix, or an IANA-assigned Enterprise Number prefixed with EID:.

Organizations that use .com domain names may omit the .com suffix. For example, Contoso.com would

use Contoso instead of Contoso_com, but Contoso.org would use Contoso_org. The domain name

portion of an OEM identifier shall be considered to be case independent. That is, the text Contoso_biz,

contoso_BIZ, conTOso_biZ, and so on all identify the same OEM and top-level namespace.

The OEM identifier portion of the property name may be followed by an underscore (_) and any additional

string to enable further creation of namespaces of OEM-specified objects as desired by the OEM. For

example, Contoso_xxxx or EID_412_xxxx. The form and meaning of any text that follows the trailing

underscore is completely OEM-specific. OEM-specified extension suffixes may be case sensitive,

depending on the OEM. Generic client software should treat such extensions, if present, as opaque and

not try to parse nor interpret the content.

This suffix could be used in many ways, depending on OEM need. For example, the Contoso company

may have a Research suborganization, in which case the OEM-specified property name might be

extended to _ContosoResearch. Alternatively, it can identify a namespace for a functional area,

geography, subsidiary, and so on.

The OEM identifier portion of the name typically identifies the company or organization that created and

maintains the schema for the property. However, this is not a requirement. The identifier is only required

to uniquely identify the party that is the top-level manager of a namespace to prevent collisions between

OEM property definitions from different vendors or organizations. Consequently, the organization for the

top of the namespace may be different than the organization that provides the definition of the OEM-

specified property. For example, Contoso may allow one of their customers, such as CustomerA, to

extend a Contoso product with certain CustomerA proprietary properties. In this case, although Contoso

allocated the name Contoso_customers_CustomerA, it could be CustomerA that defines the content

DSP0266 Redfish Specification

Version 1.11.2 Published 97

and functionality under that namespace. In all cases, OEM identifiers should not be used except with

permission or as specified by the identified company or organization.

40.3. OEM resource naming and URIs

Companies, OEMs, and other organizations can define additional resources and link to them from an Oem

property found in a standard Redfish resource. To avoid naming collisions with current or future standard

Redfish schema files, the defining organization's name should be prepended to the resource name. For

example, ContosoDrive would not conflict with a Drive resource or another OEM's drive-related

resource.

To avoid URI collisions with other OEM resources and future Redfish standard resources, the URIs for

OEM resources within the Redfish resource tree shall be in the form:

BaseUri/Oem/OemName/ResourcePath

where

Variable Description

BaseUri

URI segment of the standard Redfish resource starting with /redfish/ where

the Oem property is used. For example, /redfish/v1/Systems/

3AZ38944T523.

OemName
Name of the OEM, that follows the same naming as defined in the Oem property

format and content clause.

ResourcePath

Path to the OEM-defined resource. This path might contain multiple segments

for cases where OEM-defined resources are subordinate to an OEM-defined

resource. Each segment in the path contains the name of an OEM-defined

resource.

For example, if Contoso defined a new ContosoAccountServiceMetrics resource to be linked

through the Oem property at the /redfish/v1/AccountService URI, the OEM resource has the

/redfish/v1/AccountService/Oem/Contoso/AccountServiceMetrics URI.

40.4. OEM property examples

The following fragment presents some examples of naming and use of the Oem property as it might

appear when accessing a resource. The example shows that the OEM identifiers can be of different

forms, that OEM-specified content can be simple or complex, and that the format and usage of

extensions of the OEM identifier is OEM-specific.

Redfish Specification DSP0266

98 Published Version 1.11.2

{

"Oem": {

"Contoso": {

"@odata.type": "#Contoso.v1_2_1.AnvilTypes1",

"slogan": "Contoso anvils never fail",

"disclaimer": "* Most of the time"

},

"Contoso_biz": {

"@odata.type": "#ContosoBiz.v1_1.RelatedSpeed",

"speed" : "ludicrous"

},

"EID_412_ASB_123": {

"@odata.type": "#OtherSchema.v1_0_1.powerInfoExt",

"readingInfo": {

"readingAccuracy": "5",

"readingInterval": "20"

}

},

"Contoso_customers_customerA": {

"@odata.type" : "#ContosoCustomer.v2015.slingPower",

"AvailableTargets" : ["rabbit", "duck", "runner"],

"launchPowerOptions" : ["low", "medium", "eliminate"],

"powerSetting" : "eliminate",

"targetSetting" : "rabbit"

}

},

...

}

40.5. OEM actions

OEM-specific actions appear in the JSON payload as properties of the Oem object, nested under an

Actions property.

The name of the property that represents the action, which shall follow the form:

#Namespace.Action

where

Variable Description

Namespace Namespace.

Action Action.

DSP0266 Redfish Specification

Version 1.11.2 Published 99

{

"Actions": {

"Oem": {

"#Contoso.Ping": {

"target":"/redfish/v1/Systems/1/Actions/Oem/Contoso.Ping"

}

}

},

...

}

The URI of the OEM action in the target property shall be in the form:

ResourceUri/Actions/Oem/Namespace.Action

where

Variable Description

ResourceUri
URI of the resource that supports invoking the action. For example,

/redfish/v1/Systems/1/.

Actions Name of the property containing the actions for a resource.

Oem Name of the OEM property within the Actions property.

Namespace.Action Namespace followed by the action. For example, Contoso.Ping.

41. Payload annotations

Resources, objects within a resource, and properties may include additional annotations as properties

with the name, in the format:

[PropertyName]@Namespace.TermName

where

Variable Description

PropertyName
Name of the property to annotate. If absent, the annotation applies to the entire

JSON object, which may be an entire resource.

Namespace Namespace that defines the annotation term.

Redfish Specification DSP0266

100 Published Version 1.11.2

Variable Description

TermName Annotation term to apply to the resource or property of the resource.

Services shall limit the annotation usage to the odata, Redfish, and Message namespaces. The OData

JSON Format Specification defines the odata namespace. The Redfish namespace is an alias for the

RedfishExtensions.v1_0_0 namespace.

The client can get the definition of the annotation from the OData metadata document, the HTTP Link

header, or may ignore the annotation entirely, but should not fail reading the resource due to

unrecognized annotations, including new annotations that the Redfish namespace defines.

41.1. Allowable values

To specify the list of allowable values for a property or action parameter, services may use the

@Redfish.AllowableValues annotation for properties or action parameters.

To specify the set of allowable values, include a property with the name of the property or action

parameter, followed by @Redfish.AllowableValues. The property value is a JSON array of strings

that define the allowable values for the property or action parameter.

41.2. Extended information

The following clauses describe the methods of providing extended information:

• Extended object information

• Extended property information

41.2.1. Extended object information

To specify object-level status information, services may annotate a JSON object with the

@Message.ExtendedInfo annotation.

{

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

DSP0266 Redfish Specification

Version 1.11.2 Published 101

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": "115200",

"Parity": "None",

"DataBits": "8",

"StopBits": "1",

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",

"@Message.ExtendedInfo": [

{

"MessageId": "Base.1.8.PropertyDuplicate",

"Message": "Indicates that a duplicate property was included in the

request body.",

"RelatedProperties": [

"#/InterfaceEnabled"

],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Remove the duplicate property from the request body and

resubmit the request if the operation failed."

}

]

}

The property contains an array of message objects.

41.2.2. Extended property information

Services may use @Message.ExtendedInfo, prepended with the name of the property to annotate an

individual property in a JSON object with extended information:

{

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": 115200,

"Parity": "None",

Redfish Specification DSP0266

102 Published Version 1.11.2

"DataBits": 8,

"StopBits": 1,

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",

"PinOut@Message.ExtendedInfo": [

{

"MessageId": "Base.1.8.PropertyValueNotInList",

"Message": "The value Contoso for the property PinOut is not in the list

of acceptable values.",

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Choose a value from the enumeration list that the

implementation can support and resubmit the request if the operation failed."

}

]

}

41.3. Action info annotation

The action info annotation conveys the parameter requirements and allowable values on parameters for

actions. This is done using @Redfish.ActionInfo term within the action representation. This term

contains a URI to the ActionInfo resource.

Example #ComputerSystem.Reset action with the @Redfish.ActionInfo annotation and resource:

{

"Actions": {

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"@Redfish.ActionInfo": "/redfish/v1/Systems/1/ResetActionInfo"

}

},

...

}

The ResetActionInfo resource contains a more detailed description of the parameters and the

supported values. This resource follows the ActionInfo schema definition.

{

"@odata.id": "/redfish/v1/Systems/1/ResetActionInfo",

"@odata.type": "#ActionInfo.v1_0_0.ActionInfo",

DSP0266 Redfish Specification

Version 1.11.2 Published 103

"Id": "ResetActionInfo",

"Name": "Reset Action Info",

"Parameters": [

{

"Name": "ResetType",

"Required": true,

"DataType": "String",

"AllowableValues": [

"On",

"ForceOff",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

]

}

]

}

41.4. Settings and settings apply time annotations

See the Settings resource clause.

41.5. Operation apply time and operation apply time support

annotations

See the Operation apply time clause.

41.6. Maintenance window annotation

The settings apply time and operation apply time annotations allow for an operation to be performed

during a maintenance window. The @Redfish.MaintenanceWindow term at the root of a resource

configures the start time and duration of a maintenance window for a resource.

The following example body for the /redfish/v1/Systems/1 resource configures the maintenance

window to start at 2017-05-03T23:12:37-05:00 and last for 600 seconds.

{

"@odata.id": "/redfish/v1/Systems/1",

"@odata.type": "#ComputerSystem.v1_5_0.ComputerSystem",

"@Redfish.MaintenanceWindow": {

Redfish Specification DSP0266

104 Published Version 1.11.2

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",

"MaintenanceWindowDurationInSeconds": 600

},

...

}

41.7. Collection capabilities annotation

Resource collections may contain a collection capabilities annotation. The

@Redfish.CollectionCapabilities term at the root of a resource collection shows what properties

a client is allowed to use in a POST request for creating a resource.

The following ComputerSystemCollection example body contains the collection capabilities

annotation. The UseCase property contains the ComputerSystemComposition value, and the

CapabilitiesObject property contains the /redfish/v1/Systems/Capabilities value. The

resource at /redfish/v1/Systems/Capabilities describes the POST request format for creating a

ComputerSystem resource for compositions.

{

"@odata.id": "/redfish/v1/Systems",

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "Computer System Collection",

"Members@odata.count": 0,

"Members": [],

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_1_0.CollectionCapabilities",

"Capabilities": [

{

"CapabilitiesObject": {

"@odata.id": "/redfish/v1/Systems/Capabilities"

},

"UseCase": "ComputerSystemComposition",

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"

}

}

}

]

}

}

The CapabilitiesObject resource follows the same schema for the resource that the resource

DSP0266 Redfish Specification

Version 1.11.2 Published 105

collection contains. It contains annotations to show which properties the client is allowed to use in the

POST request body. The annotations describe which properties are required, optional, or if other rules are

associated with the properties.

Annotation Description

PropertyName@Redfish.RequiredOnCreate Required in the POST request body.

PropertyName@Redfish.OptionalOnCreate Not required in the POST request body.

PropertyName@Redfish.SetOnlyOnCreate
Cannot be modified after the resource is

created.

PropertyName@Redfish.UpdatableAfterCreate
Can be modified after the resource is

created.

PropertyName@Redfish.AllowableValues Can be set to any of the listed values.

@Redfish.RequestedCountRequired

Required in the POST request body for

the corresponding object to indicate the

number of requested object instances.

Used for composition requests.

@Redfish.ResourceBlockLimits

Indicates restrictions regarding

quantities of ResourceBlock

resources of a given type in the POST

request body.

Used for composition requests.

Example CapabilitiesObject resource:

{

"@odata.id": "/redfish/v1/Systems/Capabilities",

"@odata.type": "#ComputerSystem.v1_8_0.ComputerSystem",

"Id": "Capabilities",

"Name": "Capabilities for the system collection",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

Redfish Specification DSP0266

106 Published Version 1.11.2

"Description@Redfish.SetOnlyOnCreate": true,

"HostName@Redfish.OptionalOnCreate": true,

"HostName@Redfish.UpdatableAfterCreate": true,

"Links@Redfish.RequiredOnCreate": true,

"Links": {

"ResourceBlocks@Redfish.RequiredOnCreate": true,

"ResourceBlocks@Redfish.UpdatableAfterCreate": true

},

"@Redfish.ResourceBlockLimits": {

"MinCompute": 1,

"MaxCompute": 1,

"MaxStorage": 8

}

}

41.8. Requested count and allow over-provisioning annotations

Clients use the requested count and allow over-provisioning annotations in composition requests to

express the quantity of a type of resource to allocate:

Annotation Description

@Redfish.RequestedCount Number of requested resources.

@Redfish.AllowOverprovisioning

Boolean. If true, the service may provision more

resources than the @Redfish.RequestedCount

annotation requests. Default is false.

Example client request for four or more Processor resources:

{

"Processors": {

"Members": [

{

"@Redfish.RequestedCount": 4,

"@Redfish.AllowOverprovisioning": true

}

]

},

...

}

DSP0266 Redfish Specification

Version 1.11.2 Published 107

41.9. Zone affinity annotation

The zone affinity annotation is used by clients in composition requests to indicate the components for the

composition come from the specified Resource Zone. The @Redfish.ZoneAffinity term in the

request body contains the value of the Id property of the requested Resource Zone.

Example client request for components to be allocated from the Resource Zone with the Id property

containing 1:

{

"@Redfish.ZoneAffinity": "1",

...

}

41.10. Supported certificates annotation

Resource collections of type CertificateCollection should contain a supported certificates

annotation. The @Redfish.SupportedCertificates term at the root of a resource collection shows

the different certificate formats allowed in the resource collection.

Example CertificateCollection that only supports PEM style certificates:

{

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates",

"@odata.type": "#CertificateCollection.CertificateCollection",

"Name": "Certificate collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates/

1"

}

],

"@Redfish.SupportedCertificates": [

"PEM"

]

}

41.11. Deprecated annotation

Services may annotate properties with @Redfish.Deprecated if the schema definition has the property

Redfish Specification DSP0266

108 Published Version 1.11.2

marked as deprecated.

Example deprecated property:

{

"VendorID": "0xABCD",

"VendorID@Redfish.Deprecated": "This property has been deprecated in favor of

ModuleManufacturerID.",

...

}

42. Settings resource

A settings resource represents the future intended state of a resource. Some resources have properties

that can be updated and the updates take place immediately; however, some properties need to be

updated at a certain point in time, such as a system reset. While the resource represents the current

state, the settings resource represents the future intended state. The service represents properties of a

resource that can only be updated at a certain point in time using a @Redfish.Settings payload

annotation. The settings annotation contains a link to a subordinate resource with the same schema

definition. The properties within the settings resource contain the properties that are updated at a certain

point in time.

For resources that support a future state and configuration, the response shall contain a property with the

@Redfish.Settings annotation. When a settings annotation is used, the following conditions shall

apply:

• The settings resource linked to current resource with the @Redfish.Settings annotation shall

be of the same schema definition.

• The settings resource should be a subset of properties that can be updated.

• The settings resource shall not contain the @Redfish.Settings annotation.

• The settings resource may contain the @Redfish.SettingsApplyTime annotation.

The @Redfish.Settings annotation includes several properties to help clients monitor when the

resource is consumed by the service and determine the results of applying the values, which may or may

not have been successful.

• The Messages property is a collection of messages that represent the results of the last time the

values of the settings resource were applied.

• The ETag property contains the ETag of the settings resource that was last applied.

• The Time property indicates the time when the settings resource was last applied.

The following resource example body supports a settings resource. A client can use the

DSP0266 Redfish Specification

Version 1.11.2 Published 109

SettingsObject property to locate the URI of the settings resource.

{

"@Redfish.Settings": {

"@odata.type": "#Settings.v1_0_0.Settings",

"SettingsObject": {

"@odata.id": "/redfish/v1/Systems/1/Bios/SD"

},

"Time": "2017-05-03T23:12:37-05:00",

"ETag": "\"A89B031B62\"",

"Messages": [

{

"MessageId": "Base.1.8.PropertyNotWritable",

"RelatedProperties": [

"#/Attributes/ProcTurboMode"

]

}

]

},

...

}

When a client updates the settings resource, it may include the @Redfish.SettingsApplyTime

annotation in the request to indicate when to apply the settings.

• If a service enables a client to indicate when to apply settings, the settings resource shall contain

a property with the @Redfish.SettingsApplyTime annotation.

• Only settings resources shall contain the @Redfish.SettingsApplyTime annotation.

In the following example request, the client indicates that the settings resource values are applied either

on reset or during the specified maintenance window:

{

"@Redfish.SettingsApplyTime": {

"@odata.type": "#Settings.v1_1_0.PreferredApplyTime",

"ApplyTime": "OnReset",

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",

"MaintenanceWindowDurationInSeconds": 600

},

...

}

Redfish Specification DSP0266

110 Published Version 1.11.2

43. Special resource situations

43.1. Overview

Resources need to exhibit common semantic behavior whenever possible. This can be difficult in some

situations discussed in this clause.

43.2. Absent resources

Resources may be absent or their state unknown at the time a client requests information about that

resource. For resources that represent removable or optional components, absence provides useful

information to clients because it indicates a capability, such as an empty PCIe slot, DIMM socket, or drive

bay, that would not be apparent if the resource simply did not exist.

This also applies to resources that represent a limited number of items or unconfigured capabilities within

an implementation, but this usage should be applied sparingly and should not apply to resources limited

in quantity due to arbitrary limits. For example, an implementation that limits SoftwareInventory to a

maximum of 20 items should not populate 18 absent resources when only two items are present.

For resources that provide useful data in an absent state and where the URI is expected to remain

constant, such as when a DIMM is removed from a memory socket, the resource should exist and should

return a value of Absent for the State property in the Status object.

In this circumstance, any required properties for which there is no known value shall be represented as

null. Properties whose support is based on the configuration choice or the type of component installed,

and therefore unknown while in the absent state, should not be returned. Likewise, subordinate resources

for an absent resource should not be populated until their support can be determined. For example, the

Power and Thermal resources under a Chassis resource should not exist for an absent Chassis.

Client software should be aware that when absent resources are later populated, the updated resource

may represent a different configuration or physical item, and previous data, including read-only properties,

obtained from that resource may be invalid. For example, the Memory resource shows details about an

single DIMM socket and the installed DIMM. When that DIMM is removed, the Memory resource remains

as an absent resource to indicate the empty DIMM socket. Later, a new DIMM is installed in that socket,

and the Memory resource represents data about this new DIMM, which could have completely different

characteristics.

44. Registries

Registry resources assist the client in interpreting Redfish resources beyond the Redfish schema

definitions. To get more information about a resource, event, message, or other item, use an identifier to

DSP0266 Redfish Specification

Version 1.11.2 Published 111

search registries. This information can include other properties, property restrictions, and the like.

Registries are themselves resources.

Redfish defines the following types of registries:

Registry Description See

BIOS

Determines the semantics of each property in a BIOS or BIOS

settings resource. Because BIOS information can vary from

platform to platform, Redfish cannot define a fixed schema for

these values.

This registry contains both property descriptions and other

information, such as data type, allowable values, and user

menu information.

Message

Constructs a message from a MessageId and other message

information to present to an end user. The messages in these

registries appear in both eventing and error responses to

operations.

This registry is the most common type of registry.

• Error

responses

• Eventing

Privilege

Maps the resources in a Redfish Service to the privileges that

can complete specified operations against those resources.

A client can use this information to:

• Determine which roles should have specific privileges.

• Map accounts to those roles so that the accounts can

complete operations on Redfish resources.

Privilege model

45. Schema annotations

The schema definitions of the data model use schema annotations to provide additional documentation

for developers. This clause describes the different types of schema annotations that the Redfish data

model uses. For information about how each of the annotations are implemented in their respective

schema languages, see the Schema definition languages clause.

Redfish Specification DSP0266

112 Published Version 1.11.2

45.1. Description annotation

The description annotation can be applied to any type, property, action, or parameter to provide a

description of Redfish schema elements suitable for end users or user interface help text.

All schemas that are published or republished by the DMTF's Redfish Forum shall include a description

annotation on the following schema definitions:

• Redfish types

• Properties

• Reference properties

• Enumeration values

• Resources and resource collections

• Structured types

45.2. Long description annotation

The long description annotation can be applied to any type, property, action, or parameter to provide a

formal, normative specification of the schema element.

When the long descriptions in the Redfish schema contain normative language, the service shall be

required to conform with the statement.

All schemas that are published or republished by the DMTF's Redfish Forum shall include a long

description annotation on the following schema definitions:

• Redfish types

• Properties

• Reference properties

• Resources and resource collections

• Structured types

45.3. Resource capabilities annotation

The resource capabilities annotation can be applied to resources and resource collections to express the

different type of HTTP operations a client can invoke on the given resource or resource collection.

• Insert capabilities indicate whether a client can perform a POST on the resource for creating a

new resource.

• Update capabilities indicate whether a client can perform a PATCH or PUT on the resource.

• Delete capabilities indicate whether a client can perform a DELETE on the resource.

• A service may implement a subset of the capabilities that are allowed on the resource or

resource collection.

DSP0266 Redfish Specification

Version 1.11.2 Published 113

All schemas that are published or republished by the DMTF's Redfish Forum for resources and resource

collections shall include resource capabilities annotations.

45.4. Resource URI patterns annotation

The resource URI patterns annotation expresses the valid URI patterns for a resource or resource

collection.

The strings for the URI patterns may use { and } characters to express parameters within a given URI

pattern. Items between the { and } characters are treated as identifiers within the URI for given instances

of a Redfish resource. Clients interpret this as a string to be replaced to access a given resource. A URI

pattern may contain multiple identifier terms to support multiple levels of nested resource collections. The

identifier term in the URI pattern shall match the Id string property for the corresponding resource, or the

MemberId string property for the corresponding object within a resource. The process for forming the

strings that are concatenated to form the URI pattern are in the resource, schema, property, and URI

naming conventions clause.

The following string is an example URI pattern that describes a ManagerAccount resource: /redfish/

v1/AccountService/Accounts/{ManagerAccountId}

Using the previous example, {ManagerAccountId} is replaced by the Id property of the corresponding

ManagerAccount resource. If the Id property for a ManagerAccount resource is John, the full URI for

that resource is /redfish/v1/AccountService/Accounts/John.

The URI patterns are constructed based on the formation of the resource tree. When constructing the URI

pattern for a subordinate resource, the URI pattern for the current resource is used and appended. For

example, the RoleCollection resource is subordinate to AccountService. Because the URI pattern

for AccountService is /redfish/v1/AccountService, the URI pattern for the RoleCollection

resource is /redfish/v1/AccountService/Roles.

In some cases, the subordinate resource is found inside of a structured property of a resource. In these

cases, the name of the structured property appears in the URI pattern for the subordinate resource. For

example, the CertificateCollection resource is subordinate to the ManagerNetworkProtocol

resource from the HTTPS property. Because the URI pattern for ManagerNetworkProtocol is

/redfish/v1/Managers/{ManagerId}/NetworkProtocol, the URI pattern for the

CertificateCollection resource is /redfish/v1/

Managers/{ManagerId}/NetworkProtocol/HTTPS/Certificates.

All schemas that are published or republished by the DMTF's Redfish Forum for resources and resource

collections shall be annotated with the resource URI patterns annotation.

All Redfish resources and Redfish resource collections implemented by a service shall match the URI

pattern described by the resource URI patterns annotation for their given definition.

Redfish Specification DSP0266

114 Published Version 1.11.2

45.5. Additional properties annotation

The additional properties annotation specifies whether a type can contain additional properties outside of

those defined in the schema. Types that do not support additional properties shall not contain properties

beyond those described in the schema.

45.6. Permissions annotation

The permissions annotation specifies whether a client can modify the value of a property, or if the

property is read-only.

A service may implement a modifiable property as read-only.

45.7. Required annotation

The required annotation specifies whether a service needs to support a property. Required properties

shall be annotated with the required annotation. All other properties are optional.

45.8. Required on create annotation

The required on create annotation specifies that a property is required to be provided by the client on

creation of the resource. Properties not annotated with the required on create annotation are not required

to be provided by the client on a create operation.

45.9. Units of measure annotation

In addition to following naming conventions, properties representing units of measure shall be annotated

with the units of measure annotation to specify the units of measurement for the property.

The value of the annotation shall be a string that contains the case-sensitive "(c/s)" symbol of the unit of

measure as listed in the Unified Code for Units of Measure (UCUM), unless the symbolic representation

does not reflect common usage. For example, RPM commonly reports fan speeds in revolutions-per-

minute but has no simple UCUM representation. For units with prefixes, the case-sensitive (c/s) symbol

for the prefix as listed in UCUM should be prepended to the unit symbol. For example, Mebibyte (1024^2

bytes), which has the UCUM Mi prefix and By symbol, would use MiBy as the value for the annotation.

For values that also include rate information, such as megabits per second, the rate unit's symbol should

be appended and use a slash (/) character as a separator. For example, Mbit/s.

45.10. Expanded resource annotation

The expanded resource annotation can be applied to a reference property to specify that the default

DSP0266 Redfish Specification

Version 1.11.2 Published 115

behavior for the service is to include the contents of the related resource or resource collection in

responses. This behavior follows the same semantics of the expand query parameter with a level of 1.

Reference properties annotated with this term shall be expanded by the service, even if not requested by

the client. A service may page resource collections.

45.11. Owning entity annotation

The owning entity annotation can be applied to a schema to specify the name of the entity responsible for

development, publication, and maintenance of a given schema.

45.12. Deprecated annotation

The deprecated annotation specifies if a property, enumeration, or other schema element has been

deprecated. Schema elements marked as deprecated contain a schema version that shows when the

element was deprecated, as well as text that specifies the favored approach.

Existing and new implementations may use deprecated schema elements, but they should move to the

favored approach. Deprecated schema elements may be implemented in order to achieve backwards

compatibility. Deprecated schema elements may be removed from the next major version of the schema.

46. Versioning

As stated previously, a resource can be an individual entity or a resource collection, which acts as a

container for a set of resources.

A resource collection does not contain any version information because it defines a single Members

property, and the overall collection definition never grows over time.

A resource has both unversioned and versioned definitions.

References from other resources use the unversioned definition of a resource to ensure no version

dependencies exist between the definitions. The unversioned definition of a resource contains no

property information about the resource.

The versioned definition of a resource contains a set of properties, actions, and other definitions

associated with the given resource. The version of a resource follows the format:

vX.Y.Z

where

Redfish Specification DSP0266

116 Published Version 1.11.2

Variable Type Version Description

X Integer
Major

version.
Backward-incompatible change.

Y Integer
Minor

version.

Minor update. Redfish introduces new functionality but does

not remove any functionality. The minor version preserves

compatibility with earlier minor versions. For example, a new

property introduces a new minor version of the resource.

Z Integer
Errata

version.

Fix in an earlier version. For example, a fix to a schema

annotation on a property introduces an errata version of the

resource.

47. Localization

The creation of separate localized copies of Redfish schemas and registries is allowed and encouraged.

Localized schema and registry files may be submitted to the DMTF for republication in the Redfish

Schema Repository.

Property names, parameter names, and enumeration values in the JSON response payload are never

localized but translated copies of those names may be provided as additional annotations in the localized

schema for use by client applications. A separate file for each localized schema or registry shall be

provided for each supported language. The English-language versions of Redfish schemas and registries

shall be the normative versions, and alterations of meaning due to translation in localized versions of

schemas and registries shall be forbidden.

Schemas and registries in non-English languages shall use the appropriate schema annotations to

identify their language. Descriptive property, parameter, and enumeration text not translated into the

specified language shall be removed from localized versions. This removal enables software and tools to

combine normative and localized copies, especially for minor schema version differences.

DSP0266 Redfish Specification

Version 1.11.2 Published 117

File naming and publication

For consistency in publication and to enable programmatic access, all Redfish-related files shall follow a

set of rules to construct the name of each file. The Schema definition languages clause describes the file

name construction rules, while the following clauses describe the construction rules for other file types.

48. Registry file naming

Redfish Message or Privilege Registry Files shall use the registry name to construct the file name, in this

format:

RegistryName.MajorVersion.MinorVersion.Errata.json

For example, the file name of the Base Message Registry v1.0.2 is Base.1.0.2.json.

49. Profile file naming

The document that describes a profile follows the Redfish schema file naming conventions. The file name

format for profiles shall be:

ProfileName.vMajorVersion_MinorVersion_Errata.json

For example, the file name of the BasicServer profile v1.2.0 is BasicServer.v1_2_0.json. The file

name shall include the profile name and version, which matches those property values within the

document.

50. Dictionary file naming

The binary file describing a Redfish Device Enablement Dictionary follows the Redfish schema file

naming conventions for the schema definition language that the dictionary is converted from. Because a

single Dictionary file contains all minor revisions of the schema, only the major version appears in the file

name. The file names for Dictionaries shall be formatted as:

DictionaryName_vMajorVersion.dict

For example, the file name of the Chassis dictionary v1.2.0 is Chassis_v1.dict.

Redfish Specification DSP0266

118 Published Version 1.11.2

51. Localized file naming

Localized schemas and registries shall follow the same file naming conventions as the English language

versions. When multiple localized copies are present in a repository and which have the same file name,

files in languages other than English shall be organized into subfolders named to match the ISO 639-1

language code for those files. English language files may be duplicated in an en subfolder for

consistency.

52. DMTF Redfish file repository

All Redfish schemas, registries, dictionaries, and profiles published or republished by the DMTF's Redfish

Forum are available from the DMTF website for download. Programs may use the following durable URLs

to access the repository. Programs incorporating remote repository access should implement a local

cache to reduce latency, program requirements for Internet access and undue traffic burden on the DMTF

website.

Organizations creating Redfish-related files such as OEM schemas, Redfish Interoperability Profiles, or

Message Registries are encouraged to use the form at https://redfish.dmtf.org/redfish/portal to submit

those files to the DMTF for republication in the DMTF Redfish file repository.

The files are organized on the site in the following manner:

URL Folder contents

redfish.dmtf.org/

schemas
Current (most recent minor or errata) release of each schema file in

CSDL, JSON Schema, and/or OpenAPI formats.

redfish.dmtf.org/

schemas/v1

Durable URL for programmatic access to all v1.xx schema files. Every

v1.xx minor or errata release of each schema file in CSDL, JSON

Schema, OpenAPI formats.

redfish.dmtf.org/

schemas/v1/{code}

Durable URL for programmatic access to localized v1.xx schema files.

Localized schemas are organized in subfolders using the two-character

ISO 639-1 language code as the {code} segment.

redfish.dmtf.org/

schemas/archive
Subfolders contain schema files specific to a particular version release.

redfish.dmtf.org/

registries
Current (most recent minor or errata) release of each registry file.

redfish.dmtf.org/
Durable URL for programmatic access to all v1.xx registry files. Every

v1.xx minor or errata release of each registry file.

DSP0266 Redfish Specification

Version 1.11.2 Published 119

http://redfish.dmtf.org/
https://redfish.dmtf.org/redfish/portal

URL Folder contents

registries/v1

redfish.dmtf.org/

registries/

v1/{code}

Durable URL for programmatic access to localized v1.xx registry files.

Localized schemas are organized in subfolders using the two-character

ISO 639-1 language code as the {code} segment.

redfish.dmtf.org/

registries/

archive

Subfolders contain registry files specific to a particular version release.

redfish.dmtf.org/

profiles
Current release of each Redfish Interoperability Profile (.json) file and

associated documentation.

redfish.dmtf.org/

profiles/v1
Durable URL for programmatic access to all v1.xx Redfish

Interoperability Profile (.json) files.

redfish.dmtf.org/

profiles/archive
Subfolders contain profile files specific to a particular profile version or

release.

redfish.dmtf.org/

dictionaries
Durable URL for programmatic access to all v1.xx Redfish Device

Enablement Dictionary files.

redfish.dmtf.org/

dictionaries/v1
Durable URL for programmatic access to all v1.xx Redfish Device

Enablement Dictionary files.

redfish.dmtf.org/

dictionaries/

archive

Subfolders contain dictionary files specific to a particular version release.

Redfish Specification DSP0266

120 Published Version 1.11.2

Schema definition languages

Individual resources and their dependent types and actions are defined within a Redfish schema

document. This clause describes how these documents are constructed in the following formats:

• OData Common Schema Definition Language

• JSON Schema

• OpenAPI

53. OData Common Schema Definition Language

OData Common Schema Definition Language (CSDL) is an XML schema format defined by the OData

CSDL Specification. The following clause describes how Redfish uses CSDL to describe resources and

resource collections.

53.1. File naming conventions for CSDL

Redfish CSDL schema files shall be named using the resource name value, followed by _v and the major

version of the schema. Because a single CSDL schema file contains all minor revisions of the schema,

only the major version appears in the file name. The file name shall be formatted as:

TypeName_v*MajorVersion*.xml

For example, version 1.3.0 of the Chassis schema is Chassis_v1.xml.

53.2. Core CSDL files

File Description

RedfishError_v1.xml Payload definition of the Redfish error response.

RedfishExtensions_v1.xml All definitions for Redfish types and annotations.

Resource_v1.xml
All base definitions for resources, resource collections, and

common properties, such as Status.

DSP0266 Redfish Specification

Version 1.11.2 Published 121

53.3. CSDL format

The outer element of the OData schema representation document shall be the Edmx element, and shall

have a Version attribute with a value of 4.0.

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:DataService elements go here -->

</edmx:Edmx>

The Referencing other CSDL files and CSDL data services clauses describe the items that are found

within the Edmx element.

53.3.1. Referencing other CSDL files

CSDL files may reference types defined in other CSDL documents. This is done by including Reference

tags.

The Reference element uses the Uri attribute to specify a CSDL file. The Reference element also

contains one or more Include tags that specify the Namespace attribute containing the types to be

referenced, along with an optional Alias attribute for that namespace.

Type definitions generally reference the OData and Redfish namespaces for common type annotation

terms. Redfish CSDL files always use the Alias attribute on the following namespaces:

• Org.OData.Core.V1 is aliased as OData.

• Org.OData.Measures.V1 is aliased as Measures.

• RedfishExtensions.v1_0_0 is aliased as Redfish.

• Validation.v1_0_0 is aliased as Validation.

<edmx:Reference Uri="http://docs.oasis-open.org/odata/odata/v4.0/cs01/vocabularies/

Org.OData.Core.V1.xml">

<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>

<edmx:Reference

Uri="http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

Org.OData.Measures.V1.xml">

<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

<edmx:Include Namespace="Validation.v1_0_0" Alias="Validation"/>

</edmx:Reference>

Redfish Specification DSP0266

122 Published Version 1.11.2

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Resource_v1.xml">

<edmx:Include Namespace="Resource"/>

<edmx:Include Namespace="Resource.v1_0_0"/>

</edmx:Reference>

53.3.2. CSDL data services

Define structures, enumerations, and other definitions in CSDL within a namespace. Use a Schema tag to

define the schema and use the Namespace attribute to declare the name of the namespace.

Redfish uses namespaces to differentiate different versions of the schema. CSDL enables structures to

inherit from other structures, which enables newer namespaces to define only the changes. The Elements

of CSDL namespaces clause describes this behavior.

The Schema element is a child of the DataServices element, which is a child of the Edmx element:

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_0_0">

<!-- Type definitions for version 1.0.0 of MyTypes go here -->

</Schema>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_1_0">

<!-- Type definitions for version 1.1.0 of MyTypes go here -->

</Schema>

</edmx:DataServices>

53.4. Elements of CSDL namespaces

The following clauses describe the definitions within each namespace:

• Qualified names

• Entity type and complex type elements

53.4.1. Qualified names

Many definitions in CSDL use references to qualified names. CSDL defines this as a string in the form:

Namespace.TypeName

where

DSP0266 Redfish Specification

Version 1.11.2 Published 123

Variable Description

Namespace Namespace name.

TypeName Name of the element in the namespace.

For example, if a reference is made to MyType.v1_0_0.MyDefinition, the definition can be found in

the MyType.v1_0_0 namespace with an element named MyDefinition.

53.4.2. Entity type and complex type elements

Use the EntityType and ComplexType tags to define the entity type and complex type elements,

respectively. These elements define a JSON structure and their set of properties. This is done by defining

property elements and navigation property elements within the EntityType or ComplexType tags.

All entity types and complex types contain a Name attribute, which specifies the name of the definition.

Entity types and complex types may have a BaseType attribute, which specifies a qualified name. When

the BaseType attribute is used, all definitions of the referenced BaseType are available to the entity type

or complex type being defined.

All resources and resource collections are defined with the entity type element. Resources inherit from

Resource.v1_0_0.Resource, and resource collections inherit from

Resource.v1_0_0.ResourceCollection.

Most structured properties are defined with the complex type element. Some use the entity type element

that inherits from Resource.v1_0_0.ReferenceableMember. The entity type element enables

references to be made by using the Navigation Property element, whereas the complex type element

does not allow for this usage.

Example entity type and complex type element:

<EntityType Name="TypeA" BaseType="Resource.v1_0_0.Resource">

<Annotation Term="OData.Description" String="The TypeA entity type description."/>

<Annotation Term="OData.LongDescription" String="The TypeA entity type normative

description."/>

<!-- Property and navigation property definitions go here -->

</EntityType>

<ComplexType Name="PropertyTypeA">

<Annotation Term="OData.Description" String="The TypeA structured property

description."/>

<Annotation Term="OData.LongDescription" String="The TypeA structured property

normative description."/>

Redfish Specification DSP0266

124 Published Version 1.11.2

<!-- Property and navigation property definitions go here -->

</ComplexType>

53.4.3. Action element

Use the Action tag to define the action element. This element defines an action that can be performed

on a resource.

All action elements contain a Name attribute, which specifies the name of the action. The action shall be

represented in payloads as the qualified name of the action, preceded by #.

In Redfish, all action elements contain the IsBound attribute that is always set to true, which indicates

that the action appears as a member of a structured type.

The action element contains one or more Parameter tags that specify the Name and Type of each

parameter.

Because all action elements in Redfish use the term IsBound="true", the first parameter is called the

"binding parameter" and specifies the structured type to which the action belongs. In Redfish, this is

always going to be one of the following complex type elements:

• For standard actions, the Actions complex type for the resource.

• For OEM actions, the OemActions complex type for the resource.

The remaining Parameter elements describe additional parameters to be passed to the action.

Parameters containing the term Nullable="false" are required to be provided in the action request.

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyType">

<Action Name="MyAction" IsBound="true">

<Parameter Name="Thing" Type="MyType.Actions"/>

<Parameter Name="Parameter1" Type="Edm.Boolean"/>

<Parameter Name="Parameter2" Type="Edm.String" Nullable="false"/>

</Action>

<ComplexType Name="Actions">

...

</ComplexType>

...

</Schema>

Some action parameters may specify a type that is defined by an entity type element. In these cases, the

DSP0266 Redfish Specification

Version 1.11.2 Published 125

parameter in the request will be a reference object to a resource within the service.

53.4.3.1. Action element for OEM actions

OEM-specific actions shall be defined by using the action element with the binding parameter set to the

OemActions complex type for the resource. For example, the following definition defines the OEM

#Contoso.Ping action for a ComputerSystem.

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Contoso">

<Action Name="Ping" IsBound="true">

<Parameter Name="ComputerSystem" Type="ComputerSystem.v1_0_0.OemActions"/>

</Action>

</Schema>

53.4.3.2. Action with a response body

A response body for an action shall be defined using the ReturnType tag within an Action element. For

example, the following definition defines the GenerateCSR action with a response that contains the

definition specified by GenerateCSRResponse.

<Action Name="GenerateCSR" IsBound="true">

<Parameter Name="CertificateService" Type="CertificateService.v1_0_0.Actions"/>

...

<ReturnType Type="CertificateService.v1_0_0.GenerateCSRResponse" Nullable="false"/>

</Action>

<ComplexType Name="GenerateCSRResponse">

<Annotation Term="OData.AdditionalProperties" Bool="false"/>

<Annotation Term="OData.Description" String="The response body for the GenerateCSR

action."/>

<NavigationProperty Name="CertificateCollection"

Type="CertificateCollection.CertificateCollection" Nullable="false">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="OData.Description" String="The link to the certificate

resource collection where the certificate is installed."/>

<Annotation Term="Redfish.Required"/>

</NavigationProperty>

<Property Name="CSRString" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="OData.Description" String="The string for the certificate

signing request."/>

<Annotation Term="Redfish.Required"/>

</Property>

</ComplexType>

Redfish Specification DSP0266

126 Published Version 1.11.2

Using the above example, the following payload is an example response for the GenerateCSR action.

{

"CSRString": "-----BEGIN CERTIFICATE REQUEST-----...-----END CERTIFICATE

REQUEST-----",

"CertificateCollection": {

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates"

}

}

53.4.4. Property element

Properties of resources, resource collections, and structured properties are defined using the property

element. The Property tag defines a property element inside entity type and complex type elements.

All property elements contain a Name attribute, which specifies the name of the property.

All property elements contain a Type attribute specifies the data type. The Type attribute shall be one of

the following names or types:

• A qualified name that references an enum type element.

• A qualified name that references a complex type element.

• A primitive data type.

• An array of the previous names or types by using the Collection term.

Primitive data types shall be one of the following:

Type Meaning

Edm.Boolean True or False.

Edm.DateTimeOffset Date-time string.

Edm.Decimal Numeric values with fixed precision and scale.

Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits).

Edm.Duration Duration string.

Edm.Guid GUID/UUID string.

Edm.Int64 Signed 64-bit integer.

Edm.String UTF-8 string.

DSP0266 Redfish Specification

Version 1.11.2 Published 127

Property elements may specify a Nullable attribute. If the attribute is false, the property value cannot

be null. If the attribute is true or absent, the property value can be null.

Example property element:

<Property Name="Property1" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Description" String="The Property1 property description."/>

<Annotation Term="OData.LongDescription" String="The Property1 property normative

description."/>

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="Redfish.Required"/>

<Annotation Term="Measures.Unit" String="Watts"/>

</Property>

53.4.5. Navigation property element

Reference properties of resources, resource collections, and structured properties are defined using the

navigation property element. The NavigationProperty tag defines a navigation property element

inside entity type and complex type elements.

All navigation property elements contain a Name attribute, which specifies the name of the property.

All navigation property elements contain a Type attribute specifies the data type. The Type attribute is a

qualified name that references an entity type element. This can also be made into an array using the

Collection term.

Navigation property elements may specify a Nullable attribute. If the attribute is false, the property

value cannot be null. If the attribute is true or absent, the property value can be null.

Unless the reference property is to be expanded, all navigation properties in Redfish use the

OData.AutoExpandReferences annotation element to show that the reference is always available.

Example navigation property element:

<NavigationProperty Name="RelatedType" Type="MyTypes.TypeB">

<Annotation Term="OData.Description" String="The RelatedType navigation property

description."/>

<Annotation Term="OData.LongDescription" String="The RelatedType navigation

property normative description."/>

<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

Redfish Specification DSP0266

128 Published Version 1.11.2

53.4.6. Enum type element

Use the EnumType tag to define the enum type element. This element defines a set of enumeration

values, which may be applied to one or more properties.

All enum type elements contain a Name attribute, which specifies the name of the set of enumeration

values.

Enum type elements contain Member tags that define the members of the enumeration. The Member tags

contain a Name attribute that specifies the string value of the member name.

<EnumType Name="EnumTypeA">

<Annotation Term="OData.Description" String="The EnumTypeA enum type

description."/>

<Annotation Term="OData.LongDescription" String="The EnumTypeA enum type normative

description."/>

<Member Name="MemberA">

<Annotation Term="OData.Description" String="The description of MemberA"/>

</Member>

<Member Name="MemberB">

<Annotation Term="OData.Description" String="The description of MemberB"/>

</Member>

</EnumType>

53.4.7. Annotation element

Annotations in CSDL are expressed using the Annotation element. The Annotation element can be

applied to any schema element in CSDL.

The following examples show how each Redfish schema annotation is expressed in CSDL.

• The OData Core Schema defines terms with the OData prefix.

• The OData Measures Schema defines terms with the Measures prefix.

• The RedfishExtensions Schema defines terms with the Redfish prefix.

Example description annotation:

<Annotation Term="OData.Description" String="This property contains the user name

for the account."/>

Example long description annotation:

DSP0266 Redfish Specification

Version 1.11.2 Published 129

<Annotation Term="OData.LongDescription" String="This property shall contain the

user name for the account."/>

Example additional properties annotation:

<Annotation Term="OData.AdditionalProperties"/>

Example permissions annotation (read-only):

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

Example permissions annotation (read/write):

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/ReadWrite"/>

Example required annotation:

<Annotation Term="Redfish.Required"/>

Example required on create annotation:

<Annotation Term="Redfish.RequiredOnCreate"/>

Example units of measure annotation:

<Annotation Term="Measures.Unit" String="MiBy"/>

Example expanded resource annotation:

<Annotation Term="OData.AutoExpand"/>

Example insert capabilities annotation (showing POST is not allowed):

Redfish Specification DSP0266

130 Published Version 1.11.2

<Annotation Term="Capabilities.InsertRestrictions">

<Record>

<PropertyValue Property="Insertable" Bool="false"/>

</Record>

</Annotation>

Example update capabilities annotation (showing PATCH and PUT are allowed):

<Annotation Term="Capabilities.UpdateRestrictions">

<Record>

<PropertyValue Property="Updatable" Bool="true"/>

<Annotation Term="OData.Description" String="Manager accounts can be updated to

change the password and other writable properties."/>

</Record>

</Annotation>

Example delete capabilities annotation (showing DELETE is allowed):

<Annotation Term="Capabilities.DeleteRestrictions">

<Record>

<PropertyValue Property="Deletable" Bool="true"/>

<Annotation Term="OData.Description" String="Manager accounts are removed with a

Delete operation."/>

</Record>

</Annotation>

Example resource URI patterns annotation:

<Annotation Term="Redfish.Uris">

<Collection>

<String>/redfish/v1/AccountService/Accounts/{ManagerAccountId}</String>

</Collection>

</Annotation>

Example owning entity annotation:

<Annotation Term="Redfish.OwningEntity" String="DMTF"/>

Example deprecated annotation:

DSP0266 Redfish Specification

Version 1.11.2 Published 131

<Annotation Term="Redfish.Revisions">

<Collection>

<Record>

<PropertyValue Property="Kind" EnumMember="Redfish.RevisionKind/Deprecated"/>

<PropertyValue Property="Version" String="v1_3_0"/>

<PropertyValue Property="Description" String="This property has been

deprecated in favor of ModuleManufacturerID."/>

</Record>

</Collection>

</Annotation>

54. JSON Schema

The JSON Schema Specification defines a JSON format for describing JSON payloads. The following

clause describes how Redfish uses JSON Schema to describe resources and resource collections.

54.1. File naming conventions for JSON Schema

Versioned Redfish JSON Schema files shall use the resource name to name the file, in this format:

ResourceName.vMajorVersion_MinorVersion_Errata.json

For example, version 1.3.0 of the Chassis schema is Chassis.v1_3_0.json.

Unversioned Redfish JSON Schema files shall use the resource name to name the file, in this format:

ResourceName.json

For example, the unversioned definition of the Chassis schema is Chassis.json.

54.2. Core JSON Schema files

File Description

odata-v4.json Definitions for common OData properties.

redfish-error.v1_0_0.json

and its subsequent versions
Payload definition of the Redfish error response.

redfish-schema-v1.json
Extensions to the JSON Schema that define Redfish JSON

Schema files.

Redfish Specification DSP0266

132 Published Version 1.11.2

File Description

Resource.json and its subsequent

versions

All base definitions for resources, resource collections, and

common properties, such as Status.

54.3. JSON Schema format

Each JSON Schema file contains a JSON object to describe resources, resource collections, and other

definitions for the data model.

The JSON object contains the following terms:

Term Description

$id Reference to the URI where the schema file is published.

$ref
For a schema file that describes a resource or resource collection, the reference

to the structural definition of the resource or resource collection.

$schema
URI to the Redfish schema extensions for JSON Schema. The value should be

http://redfish.dmtf.org/schemas/v1/redfish-schema-v1.json.

copyright Copyright statement for the organization producing the JSON Schema.

definitions Structures, enumerations, and other definitions defined by the schema.

title
For a schema file that describes a resource or resource collection, the matching

type identifier for the resource or resource collection.

54.4. JSON Schema definitions body

This clause describes the types of definitions found in the definitions term of a Redfish JSON

Schema file.

54.4.1. Resource definitions in JSON Schema

To satisfy versioning requirements, the JSON Schema representation of each resource has one

unversioned schema file, and a set of versioned schema files.

The unversioned definition of a resource contains an anyOf statement. This statement consists of an

array of $ref terms, which point to the following definitions:

• The JSON Schema definition for a reference property.

DSP0266 Redfish Specification

Version 1.11.2 Published 133

• The versioned definitions of the resource.

The unversioned definition of a resource also uses the uris term to express the allowable URIs for the

resource, and the deletable, insertable, and updatable terms to express the capabilities of the

resource.

The following example shows an unversioned resource definition in JSON Schema:

{

"ComputerSystem": {

"anyOf": [

{

"$ref": "http://redfish.dmtf.org/schemas/v1/

odata.v4_0_3.json#/definitions/idRef"

},

{

"$ref": "http://redfish.dmtf.org/schemas/v1/

ComputerSystem.v1_0_0.json#/definitions/ComputerSystem"

},

{

"$ref": "http://redfish.dmtf.org/schemas/v1/

ComputerSystem.v1_0_1.json#/definitions/ComputerSystem"

},

{

"$ref": "http://redfish.dmtf.org/schemas/v1/

ComputerSystem.v1_6_0.json#/definitions/ComputerSystem"

}

],

"deletable": true,

"description": "The ComputerSystem schema represents a general purpose machine

or system.",

"insertable": false,

"longDescription": "This resource shall represent resources that represent a

computing system.",

"updatable": true,

"uris": [

"/redfish/v1/Systems/{ComputerSystemId}"

]

},

...

}

The versioned definition of a resource contains the property definitions for the given version of the

resource.

Redfish Specification DSP0266

134 Published Version 1.11.2

54.4.2. Enumerations in JSON Schema

Definitions for enumerations can consist of these terms:

Term Description

enum String array that contains the possible enumeration values.

enumDescriptions
Object that contains the descriptions for each of the enumerations

as name-value pairs.

enumLongDescriptions
Object that contains the long descriptions for each of the

enumerations as name-value pairs.

enumDeprecated
Object that contains the deprecation guidance for each of the

enumerations as name-value pairs.

enumVersionDeprecated
Object that contains the deprecation version information for each of

the enumerations as name-value pairs.

type
Because all enumerations in Redfish are strings, the type term

always has the string value.

The following example shows an enumeration definition in JSON Schema:

{

"IndicatorLED": {

"enum": [

"Lit",

"Blinking",

"Off"

],

"enumDescriptions": {

"Blinking": "The Indicator LED is blinking.",

"Lit": "The Indicator LED is lit.",

"Off": "The Indicator LED is off."

},

"enumLongDescriptions": {

"Blinking": "This value shall represent the Indicator LED is in a blinking

state where the LED is being turned on and off in repetition.",

"Lit": "This value shall represent the Indicator LED is in a solid on

state.",

"Off": "This value shall represent the Indicator LED is in a solid off

state."

},

DSP0266 Redfish Specification

Version 1.11.2 Published 135

"type": "string"

},

...

}

54.4.3. Actions in JSON Schema

Versioned definitions of resources contain a definition called Actions. This definition is a container with

a set of terms that point to the different actions supported by the resource. The names of standard actions

shall be in the form:

#ResourceType.ActionName

Example Actions definition:

{

"Actions": {

"additionalProperties": false,

"description": "The available actions for this resource.",

"longDescription": "This type shall contain the available actions for this

resource.",

"properties": {

"#ComputerSystem.Reset": {

"$ref": "#/definitions/Reset"

}

},

"type": "object"

},

...

}

Another definition within the same schema file describes the action itself. This definition contains a term

called parameters to describe the client request body. It also contains property definitions for the

target and title properties shown in response payloads for the resource.

The following example shows a definition of an action:

{

"Reset": {

"additionalProperties": false,

"description": "This action resets the system.",

"longDescription": "This action shall perform a reset of the ComputerSystem.",

Redfish Specification DSP0266

136 Published Version 1.11.2

"parameters": {

"ResetType": {

"$ref": "http://redfish.dmtf.org/schemas/v1/Resource.json#/definitions/

ResetType",

"description": "The type of reset to be performed.",

"longDescription": "This parameter shall define the type of reset to

be performed."

}

},

"properties": {

"target": {

"description": "Link to invoke action",

"format": "uri",

"type": "string"

},

"title": {

"description": "Friendly action name",

"type": "string"

}

},

"type": "object"

},

...

}

Some action parameters may specify a type that is a resource definition. In these cases, the parameter in

the request will be a reference object to a resource within the service.

54.4.3.1. OEM actions in JSON Schema

OEM-specific actions shall be defined by using an action definition in an appropriately named JSON

Schema file. For example, the following definition defines the OEM #Contoso.Ping action, assuming it's

found in the versioned Contoso JSON Schema file, such as Contoso.v1_0_0.json.

{

"Ping": {

"additionalProperties": false,

"parameters": {},

"properties": {

"target": {

"description": "Link to invoke action",

"format": "uri",

"type": "string"

},

"title": {

DSP0266 Redfish Specification

Version 1.11.2 Published 137

"description": "Friendly action name",

"type": "string"

}

},

"type": "object"

},

...

}

54.4.3.2. Action with a response body

A response body for an action shall be defined using the actionResponse term within the action

definition. For example, the following definition defines the GenerateCSR action with a response that

contains the definition specified by #/definitions/GenerateCSRResponse.

{

"GenerateCSR": {

"actionResponse": {

"$ref": "#/definitions/GenerateCSRResponse"

},

"parameters": {}

},

"GenerateCSRResponse": {

"additionalProperties": false,

"description": "The response body for the GenerateCSR action.",

"properties": {

"CSRString": {

"description": "The string for the certificate signing request.",

"readonly": true,

"type": "string"

},

"CertificateCollection": {

"$ref": "http://redfish.dmtf.org/schemas/v1/

CertificateCollection.json#/definitions/CertificateCollection",

"description": "The link to the certificate resource collection where

the certificate is installed.",

"readonly": true

}

},

"required": [

"CertificateCollection",

"CSRString"

],

"type": "object"

}

Redfish Specification DSP0266

138 Published Version 1.11.2

}

In the previous example, the following payload is an example response for the GenerateCSR action.

{

"CSRString": "-----BEGIN CERTIFICATE REQUEST-----...-----END CERTIFICATE

REQUEST-----",

"CertificateCollection": {

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates"

}

}

54.5. JSON Schema terms

Redfish uses the following JSON Schema terms to provide schema annotations for Redfish JSON

Schema:

JSON Schema term Related Redfish schema annotation

description

enumDescriptions
Description

longDescription

enumLongDescriptions
Long description

additionalProperties Additional properties

readonly Permissions

required Required

requiredOnCreate Required on create

units Units of measure

autoExpand Expanded resource

deletable

insertable

updatable

Resource capabilities

uris Resource URI patterns

DSP0266 Redfish Specification

Version 1.11.2 Published 139

JSON Schema term Related Redfish schema annotation

owningEntity Owning entity

deprecated

versionDeprecated
Deprecated

55. OpenAPI

The OpenAPI Specification defines a format for describing JSON payloads and the set of URIs a client

can access on a service. The following clause describes how Redfish uses OpenAPI to describe

resources and resource collections.

55.1. File naming conventions for OpenAPI schema

Versioned Redfish OpenAPI files shall be named using the resource name, following the format:

ResourceName.vMajorVersion_MinorVersion_Errata.yaml

For example, version 1.3.0 of the Chassis schema is Chassis.v1_3_0.yaml.

Unversioned Redfish OpenAPI files shall use the resource name to name the file, in this format:

ResourceName.yaml

For example, the unversioned definition of the Chassis schema is Chassis.yaml.

55.2. Core OpenAPI schema files

File Description

odata-v4.yaml Definitions for common OData properties.

openapi.yaml URI paths and their respective payload structures.

Resource.yaml and its

subsequent versions

All base definitions for resources, resource collections, and

common properties, such as Status.

55.3. openapi.yaml

The openapi.yaml file is the starting point for clients to understand the construct of the service. It

Redfish Specification DSP0266

140 Published Version 1.11.2

contains the following terms:

Term Description

components Global definitions. For Redfish, contains the format of the Redfish error response.

info
Structure consisting of information about what the openapi.yaml is describing,

such as the author of the file and any contact information.

openapi Version of OpenAPI the document follows.

paths
URIs supported by the document, with possible methods, response bodies, and

request bodies.

The service shall return the openapi.yaml, if present in the Redfish Service, as a YAML document by

using either the application/yaml or application/vnd.oai.openapi MIME types. The service

may append ;charset=utf-8 to the MIME type. Note that while the application/yaml type is in

common use today, the application/vnd.oai.openapi type was recently defined and approved

specifically to support OpenAPI. Implementations should use caution when selecting the MIME type as

this specification may change in the future to reflect adoption of the OpenAPI-defined MIME type.

The paths term contains an array of the possible URIs. For each URI, it also lists the possible methods.

For each method, it lists the possible response bodies and request bodies.

Example paths entry for a resource:

/redfish/v1/Systems/{ComputerSystemId}:

get:

parameters:

- description: The value of the Id property of the ComputerSystem resource

in: path

name: ComputerSystemId

required: true

schema:

type: string

responses:

'200':

content:

application/json:

schema:

$ref: http://redfish.dmtf.org/schemas/v1/

ComputerSystem.v1_6_0.yaml#/components/schemas/ComputerSystem

description: The response contains a representation of the ComputerSystem

resource

default:

DSP0266 Redfish Specification

Version 1.11.2 Published 141

content:

application/json:

schema:

$ref: '#/components/schemas/RedfishError'

description: Error condition

Example paths entry for an action:

/redfish/v1/Systems/{ComputerSystemId}/Actions/ComputerSystem.Reset:

post:

parameters:

- description: The value of the Id property of the ComputerSystem resource

in: path

name: ComputerSystemId

required: true

type: string

requestBody:

content:

application/json:

schema:

$ref: http://redfish.dmtf.org/schemas/v1/

ComputerSystem.v1_6_0.yaml#/components/schemas/ResetRequestBody

required: true

responses:

'200':

content:

application/json:

schema:

$ref: '#/components/schemas/RedfishError'

description: The response contains the results of the Reset action

'202':

content:

application/json:

schema:

$ref: http://redfish.dmtf.org/schemas/v1/Task.v1_4_0.yaml#/components/

schemas/Task

description: Accepted; a task has been generated

'204':

description: Success, but no response data

default:

content:

application/json:

schema:

$ref: '#/components/schemas/RedfishError'

description: Error condition

Redfish Specification DSP0266

142 Published Version 1.11.2

55.4. OpenAPI file format

With the exception of openapi.yaml, each OpenAPI file contains a YAML object to describe resources,

resource collections, or other definitions for the data model. The YAML object contains the following

terms:

Term Description

components Structures, enumerations, and other definitions defined by the schema.

x-

copyright
Copyright statement for the organization producing the OpenAPI file.

title
For a schema file that describes a resource or resource collection, the matching

type identifier for the resource or resource collection.

55.5. OpenAPI components body

This clause describes the types of definitions that can be found in the components term of a Redfish

OpenAPI file.

55.5.1. Resource definitions in OpenAPI

To satisfy versioning requirements, the OpenAPI representation of each resource has one unversioned

schema file, and a set of versioned schema files.

The unversioned definition of a resource contains an anyOf statement. This statement consists of an

array of $ref terms, which point to the following definitions:

• The OpenAPI definition for a reference property.

• The versioned definitions of the resource.

Example unversioned resource definition in OpenAPI:

ComputerSystem:

anyOf:

- $ref: http://redfish.dmtf.org/schemas/v1/odata.v4_0_3.yaml#/components/schemas/

idRef

- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_0.yaml#/components/

schemas/ComputerSystem

- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_1.yaml#/components/

schemas/ComputerSystem

- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.yaml#/components/

DSP0266 Redfish Specification

Version 1.11.2 Published 143

schemas/ComputerSystem

description: The ComputerSystem schema represents a general purpose machine

or system.

x-longDescription: This resource shall be used to represent resources that represent

a computing system.

The versioned definition of a resource contains the property definitions for the given version of the

resource.

55.5.2. Enumerations in OpenAPI

Definitions for enumerations can consist of the following terms:

Term Description

enum String array that contains the possible enumeration values.

type
Because all enumerations in Redfish are strings, the type term

always has the value string.

x-enumDescriptions
Object that contains the descriptions for each of the enumerations

as name-value pairs.

x-

enumLongDescriptions
Object that contains the long descriptions for each enumeration as

a name-value pair.

x-enumDeprecated
Object that contains the deprecation guidance for each of the

enumerations as name-value pairs.

x-

enumVersionDeprecated
Object that contains the deprecation version information for each of

the enumerations as name-value pairs.

Example enumeration definition in OpenAPI:

IndicatorLED:

enum:

- Lit

- Blinking

- 'Off'

type: string

x-enumDescriptions:

Blinking: The Indicator LED is blinking.

Lit: The Indicator LED is lit.

Redfish Specification DSP0266

144 Published Version 1.11.2

'Off': The Indicator LED is off.

x-enumLongDescriptions:

Blinking: This value shall represent the Indicator LED is in a blinking state

where the LED is being turned on and off in repetition.

Lit: This value shall represent the Indicator LED is in a solid on state.

'Off': This value shall represent the Indicator LED is in a solid off state.

55.5.3. Actions in OpenAPI

Versioned definitions of resources contain a definition called Actions. This definition is a container with

a set of terms that point to the different actions supported by the resource. The names of standard actions

shall be in the form:

#ResourceType.ActionName

Example Actions definition:

Actions:

additionalProperties: false

description: The available actions for this resource.

properties:

'#ComputerSystem.Reset':

$ref: '#/components/schemas/Reset'

type: object

x-longDescription: This type shall contain the available actions for this resource.

Another definition within the same schema file describes the action itself. This definition contains property

definitions for the target and title properties shown in response payloads for the resource.

The following example shows a definition of an action:

Reset:

additionalProperties: false

description: This action resets the system.

properties:

target:

description: Link to invoke action

format: uri

type: string

title:

description: Friendly action name

type: string

DSP0266 Redfish Specification

Version 1.11.2 Published 145

type: object

x-longDescription: This action shall reset the ComputerSystem.

The parameters for the action are shown in another definition with RequestBody appended to the name

of the action. This gets mapped from the openapi.yaml file for expressing the POST method for the

URI of the action.

The following example shows a definition of parameters of an action:

ResetRequestBody:

additionalProperties: false

description: This action resets the system.

properties:

ResetType:

$ref: http://redfish.dmtf.org/schemas/v1/Resource.yaml#/components/schemas/

ResetType

description: The reset type.

x-longDescription: This parameter shall define the type of reset to perform.

type: object

x-longDescription: This action shall reset the ComputerSystem.

55.5.3.1. OEM actions in OpenAPI

OEM-specific actions shall be defined by using an action definition in an appropriately named OpenAPI

file. For example, the following definition defines the OEM #Contoso.Ping action, assuming it's found in

the versioned Contoso OpenAPI file with a name, such as Contoso.v1_0_0.yaml.

Ping:

additionalProperties: false

properties:

target:

description: Link to invoke action

format: uri

type: string

title:

description: Friendly action name

type: string

type: object

PingRequestBody:

additionalProperties: false

properties: {}

type: object

Redfish Specification DSP0266

146 Published Version 1.11.2

55.6. OpenAPI terms used by Redfish

The following OpenAPI terms provide schema annotations for Redfish OpenAPI files:

OpenAPI term Related Redfish schema annotation

description

x-enumDescriptions
Description

x-longDescription

x-enumLongDescriptions
Long description

additionalProperties Additional properties

readOnly Permissions

required Required

x-requiredOnCreate Required on create

x-units Units of measure

x-autoExpand Expanded resource

x-owningEntity Owning entity

deprecated

x-deprecatedReason

x-versionDeprecated

Deprecated

56. Schema modification rules

Schema referenced from the implementation may vary from the canonical definitions of those schema

defined by the Redfish schema or other entities, provided they adhere to the following rules. Clients

should take this into consideration when attempting operations on the resources defined by schema.

• Modified schema may constrain a read/write property to be read only.

• Modified schema may constrain a property by adding length annotations to properties that do not

have those annotations.

• Modified schema may constrain a property by adding a pattern annotation to properties that do

not have that annotation.

• Modified schema may constrain the capabilities of a resource or resource collection to remove

support for HTTP operations.

• Modified schema may remove properties that are not required.

DSP0266 Redfish Specification

Version 1.11.2 Published 147

• Modified schema may remove actions.

• Modified schema may remove action parameters that are not required.

• Modified schema may change description annotations.

• Modified schema may change any external references to point to Redfish schema that adheres

to the modification rules.

• Modified schema may change the owning entity annotation to specify who made the

modifications.

• Modified schema may remove URIs from the resource URI patterns annotation.

• Modified schema may add URIs to the resource URI patterns annotation to define OEM URIs for

standard resources and shall follow the OEM URI rules specified by the OEM resource naming

and URIs clause.

• Other modifications to the schema shall not be allowed.

Redfish Specification DSP0266

148 Published Version 1.11.2

Service details

57. Eventing

This clause describes how to use the REST-based mechanism to subscribe to and receive event

messages.

Note: For security implications of eventing, see the Security details clause.

The Redfish Service requires a client or administrator to create subscriptions to receive events.

To create a subscription, use one of these methods:

• Directly HTTP POST to the subscription collection.

• Indirectly open a Server-Sent Events (SSE) connection for the Event Service.

57.1. POST to subscription collection

To locate the Event Service, the client traverses the Redfish Service interface. The Event Service is

located in the Service Root, as described in the ServiceRoot schema.

Once the client discovers the service, they send an HTTP POST to the resource collection URI for

Subscriptions in the Event Service to subscribe to events. For the subscription body syntax, see the

Redfish EventDestination schema. This request includes:

• The URI where an event-receiver client expects events to be sent. When an event is triggered

within the Redfish Service, the service sends an event to that URI.

• The type of events to send.

If the subscription request succeeds, the service shall return:

• An HTTP 201 Created status code.

• The Location header that contains a URI of the newly created subscription resource.

If the subscription request succeeds, the service should return:

• A response body containing a representation of the subscription resource that conforms to the

EventDestination schema.

DSP0266 Redfish Specification

Version 1.11.2 Published 149

After a subscription is registered with the service, clients begin receiving events. Clients do not receive

events retroactively. The service does not retain historical events.

Services shall:

• Support push style eventing for all resources that can send events.

• Respond to a request to create a subscription with an error if the body of the request is

conflicting. For instance, if parameters in the request are not supported, the service shall return

the HTTP 400 Bad Request status code.

• Respond to a request to create a subscription with an error if the body of the request contains

both RegistryPrefixes and MessageIds, and shall return the HTTP 400 Bad Request

status code. These properties are considered mutually exclusive.

• Retain subscriptions as persistent across service restarts.

Services shall not:

• Push events by using HTTP POST unless an event subscription has been created. To terminate

the event stream at any time, either the client or the service can delete the subscription.

• Send a push event payload larger than 1 Mebibyte (1 MiB). If there is more than 1 MiB worth of

data to send the service shall divide the payload on the nearest Event entry such that the total

payload transmitted to the client is less than 1 MiB. This restriction shall not apply to metric

reports.

Services may:

• Terminate a subscription by sending a SubscriptionTerminated message from the Base

Message Registry as the last event.

• Terminate a subscription if the number of delivery errors exceeds preconfigured thresholds.

To unsubscribe from the events associated with this subscription, the client or administrator shall send an

HTTP DELETE request to the subscription's resource URI.

Subsequent requests to subscription resources that have been terminated respond with the HTTP 404

Not Found status code.

Some configurable properties define the behavior for all event subscriptions. For details, see the Redfish

EventService schema.

57.2. Open an SSE connection

A service may support the ServerSentEventUri property in the EventService resource. If a client

performs a GET on the URI that the ServerSentEventUri contains, an SSE connection opens for the

client. For details about this method, see the Server-Sent Events Event service clause.

Redfish Specification DSP0266

150 Published Version 1.11.2

57.3. EventType-based eventing

DEPRECATED: EventType-based eventing is deprecated in the Redfish schema in favor of

using RegistryPrefix and ResourceType.

DEPRECATED

A Redfish Service generates these types of events:

Event Occurs when Description

Life cycle

Resources are

created, modified,

or destroyed.

Usually indicates

that the resource

and, optionally, its

properties have

changed.

Not every modification of a resource results in an event.

This behavior is similar to when ETags are changed and

implementations may not send an event for every

resource change.

For example, if an event is sent for every Ethernet packet

that is received or each time that a sensor changes one

degree, more events than fit in a scalable interface are

generated.

Alert

An event of some

significance

happens.

Depending on the

resource, may be

generated directly

or indirectly.

Usually adopts a Message Registry approach similar to

extended error handling in that a MessageId is included.

An example of an alert event is, a chassis is opened, a

button is pushed, a cable is unplugged, or a threshold

exceeded.

These events usually do not correspond well to life cycle-

type events. Therefore, alerts have their own category.

Metric report

The Telemetry

Service generates

or updates a metric

report.

Generated as specified by the

MetricReportDefinition resources found

subordinate to the Telemetry Service. Can occur

periodically, on demand, or when changes are detected in

the metric properties.

For details, see the Redfish MetricReportDefinition

DSP0266 Redfish Specification

Version 1.11.2 Published 151

Event Occurs when Description

schema.

END DEPRECATED

57.4. Subscribing to events

To subscribe to events and filter received messages, a subscriber provides these properties:

Property Description

RegistryPrefixes

An array of standard or OEM Message Registries.

An event is sent to the subscriber if one of the Message Registries that

RegistryPrefixes lists defines the event message.

To receive messages from all registries, pass an empty array.

The contents of the array does not include the registry version.

For example, if the registry is Base.1.5.0, the property value is Base.

ResourceTypes

An array of standard or OEM resource types.

An event is sent to the subscriber if the OriginOfCondition resource

type matches one of the ResourceTypes values.

The contents of the array does not include the schema version. For

example, if the resource type is Task.v1_2_0.Task, the property value

is Task.

To receive messages from any resource, pass an empty array.

OriginResources
An array of URIs to resources.

An event is sent to the subscriber if the OriginOfCondition property

Redfish Specification DSP0266

152 Published Version 1.11.2

Property Description

matches one of the URIs listed in OriginResources.

To receive messages from any resource, pass an empty array.

To include subordinate resources regardless of depth, set the

SubordinateResources property to true.

EventFormatType

The format that can be sent by using the EventFormatTypes property in

the Event Service.

Represents the format of the payload sent to the event destination.

If the subscriber omits this value, the payload corresponds to the Event

schema.

57.5. Event formats

The event formats are:

Event format Description

Metric report message objects

Used when the Telemetry Service generates a new or updates an

existing metric report. Metric report message objects sent to the

specified client endpoint shall contain the properties, as described

in the Redfish MetricReport schema.

Event message objects

Used for all other types of events. Event message objects

POSTed to the specified client endpoint shall contain the

properties as described in the Redfish Event schema. Supports a

message registry. In a message registry approach, a message

registry lists the MessageIds in a well-known format. These

MessageIds are terse in nature and thus they are much smaller

than actual messages, making them suitable for embedded

environments.

The registry also contains a message. The message itself can

DSP0266 Redfish Specification

Version 1.11.2 Published 153

Event format Description

have arguments and default values for severity and

recommended actions. The MessageId property follows the

format defined in the MessageId format clause

Event messages may also have an EventGroupId property,

which lets clients know that different messages may be from the

same event. For instance, if a LAN cable is disconnected, they

may get a specific message from one registry about the LAN

cable being disconnected, another message from a general

registry about the resource changing, perhaps a message about

resource state change, and maybe more. For the client to

determine whether these have the same root cause, these

messages have the same value for the EventGroupId property.

57.6. OEM extensions

OEMs can extend both messages and Message Registries. Any individual message, per the

MessageRegistry schema definition, define OEM sections. Thus, if OEMs wish to provide additional

information or properties, use the OEM section.

OEMs shall not supply additional message arguments beyond those in a standard Message Registry.

OEMs may substitute their own Message Registry for the standard registry to provide the OEM section

within the registry but shall not change the standard values, such as messages, in such registries.

58. Asynchronous operations

Services that support asynchronous operations implement the TaskService and Task resources.

The Task Service describes the service that handles task. It contains a resource collection of zero or more

Task resources. The Task resource describes a long-running operation that is spawned when a request

takes longer than a few seconds, such as when a service is instantiated.

The Task schema defines task structure, including the start time, end time, task state, task status, and

zero or more task-associated messages.

Each task has a number of possible states. The Task schema defines the exact states and their

semantics.

Redfish Specification DSP0266

154 Published Version 1.11.2

When a client issues a request for a long-running operation, the service returns the HTTP 202

Accepted status code and a Location header that contains the URI of the task monitor and, optionally,

the Retry-After header that defines the amount of time that the client should wait before querying the

status of the operation.

The task monitor is an opaque service-generated URI that the client who initiates the request can use. To

query the status of an operation, and determine when the operation has been completed and whether it

succeeded, the client performs a GET request on the task monitor. The client should not include the

application/http MIME type in the Accept header.

The 202 Accepted response body should contain an instance of the Task resource that describes the

state of the task.

As long as the operation is in process, the service shall continue to return the HTTP 202 Accepted

status code when the client queries the task monitor URI.

If a service supports cancellation of a task, it shall have DELETE in the Allow header for the task

monitor. To cancel the operation, the client may perform a DELETE on the task monitor URI. The service

determines when to delete the associated Task resource.

To cancel the operation, the client may also perform a DELETE on the Task resource. Deleting the Task

resource may invalidate the associated task monitor. A subsequent GET request on the task monitor URI

returns either the HTTP 410 Gone status code or the HTTP 404 Not Found status code.

In the unlikely event that a DELETE of the task monitor or Task resource returns the HTTP 202

Accepted status code, an additional task shall not be started and instead the client may monitor the

existing Task resource for the status of the cancellation request. When the task finally completes

cancellation, operations to the task monitor and Task resources shall return the HTTP 404 Not Found

status code.

After the operation has been completed, the service shall update the TaskState with the appropriate

value. The Task schema defines the task completed values.

After the operation has been completed, the task monitor shall return:

• The appropriate HTTP status code, such as but not limited to 200 OK for most operations or

201 Created for POST to create a resource.

• The headers and response body of the initial operation, as if it had completed synchronously.

If the initial operation fails, the response body shall contain an error response.

If the operation has been completed and the service has already deleted the task, the service may return

the HTTP 410 Gone or 404 Not Found status code. This situation can occur if the client waits too long

to read the task monitor.

DSP0266 Redfish Specification

Version 1.11.2 Published 155

To continue to get status information, the client can use the resource identifier from the 202 Accepted

response to directly query the Task resource.

• Services that support asynchronous operations shall implement the Task resource.

• The response to an asynchronous operation shall return the HTTP 202 Accepted status code

and set the Location response header to the URI of a task monitor associated with the task.

The response may also include the Retry-After header that defines the amount of time that

the client should wait before polling for status. The response body should contain a

representation of the Task resource.

• GET requests to either the task monitor or Task resource shall return the current status of the

operation without blocking.

• HTTP GET, PUT, and PATCH operations should always be synchronous.

• Clients shall be prepared to handle both synchronous and asynchronous responses for HTTP

GET, PUT, PATCH, POST, and DELETE requests.

• Services shall persist pending tasks produced by client requests containing

@Redfish.OperationApplyTime across service restarts, until the task begins execution.

• Tasks that are pending execution should include the @Redfish.OperationApplyTime

property to indicate when the task will start. If the @Redfish.OperationApplyTime value is

AtMaintenanceWindowStart or InMaintenanceWindowOnReset, the task should also

include the @Redfish.MaintenanceWindow property.

59. Resource tree stability

The resource tree, which is defined as the set of URIs and array elements within the implementation,

should be consistent on a single service across device resets or power cycles, and should withstand a

reasonable amount of configuration change, such as adding an adapter to a server.

The resource tree on one service may not be consistent across instances of devices. The client should

traverse the data model and discover resources to interact with them.

Some resources might remain very stable from system to system, such as manager network settings.

However, the architecture does not guarantee this stability.

• A resource tree should remain stable across service restarts and minor device configuration

changes. Thus, the set of URIs and array element indexes should remain constant.

• A client shall not expect the resource tree to be consistent between instances of services.

60. Discovery

Automatic discovery of managed devices supporting Redfish may be accomplished by using the Simple

Service Discovery Protocol (SSDP). This protocol enables network-efficient discovery without resorting to

Redfish Specification DSP0266

156 Published Version 1.11.2

ping-sweeps, router table searches, or restrictive DNS naming schemes. Use of SSDP is optional, and if

implemented, shall enable the user to disable the protocol through the ManagerNetworkProtocol

resource.

The objective of discovery is for client software to locate managed devices that conform to the Redfish

Specification. Therefore, the primary SSDP functionality is incorporated in the M-SEARCH query. Redfish

also follows the SSDP extensions and naming that UPnP uses, where applicable, so that systems that

conform to the Redfish Specification can also implement UPnP without conflict.

60.1. UPnP compatibility

For compatibility with general-purpose SSDP client software, primarily UPnP, the service should use UDP

port 1900 for all SSDP traffic. In addition, the Time-to-Live (TTL) hop count setting for SSDP multicast

messages should default to 2.

60.2. USN format

The UUID in the USN field of the service shall equal the UUID property in the Service Root. If multiple or

redundant managers exist, the UUID of the service shall remain static regardless of redundancy failover.

The unique ID shall be in the canonical UUID format, followed by ::dmtf-org.

60.3. M-SEARCH response

The Redfish Service Search Target (ST) is defined as:

urn:dmtf-org:service:redfish-rest:1

The managed device shall respond to M-SEARCH queries for Search Target (ST) of the Redfish Service,

as well as ssdp:all. For UPnP compatibility, the managed device should respond to M-SEARCH

queries for Search Target (ST) of upnp:rootdevice.

The URN provided in the ST header in the reply shall use the redfish-rest: service name followed by

the major version of the Redfish Specification. If the minor version of the Redfish Specification to which

the service conforms is a non-zero value, that minor version shall be appended with and preceded by a

colon (:).

For example, a service that conforms to a Redfish Specification v1.4 would reply with a redfish-

rest:1:4 service.

The managed device shall provide clients with the AL header that points to the Redfish Service Root

URL.

DSP0266 Redfish Specification

Version 1.11.2 Published 157

For UPnP compatibility, the managed device should provide clients with the Location header that points

to the UPnP XML descriptor.

The response to an M-SEARCH multicast or unicast query shall use the following format:

HTTP/1.1 200 OK

CACHE-CONTROL:max-age=<seconds, at least 1800>

ST:urn:dmtf-org:service:redfish-rest:1

USN:uuid:<UUID of the service>::urn:dmtf-org:service:redfish-rest:1

AL:<URL of Redfish Service Root>

EXT:

A service may provide additional headers for UPnP compatibility. Fields in brackets are placeholders for

device-specific values.

60.4. Notify, alive, and shutdown messages

Redfish devices may implement the additional UPnP-defined SSDP messages to announce their

availability to software. If implemented, services shall allow the end user to disable the traffic separately

from the M-SEARCH response functionality. This capability enables users to use the discovery

functionality with minimal amounts of generated network traffic.

61. Server-Sent Events

61.1. General

Server-Sent Events (SSE), as defined by the Web Hypertext Application Technology Working Group,

enables a client to open a connection with a web service. The web service can continuously push data to

the client, as needed.

Successful resource responses for SSE shall:

• Return the HTTP 200 OK status code.

• Have a Content-Type header set as text/event-stream or text/event-

stream;charset=utf-8.

Unsuccessful resource responses for SSE shall:

• Return an HTTP status code of 400 or greater.

• Have a Content-Type header set as application/json or application/

json;charset=utf-8.

Redfish Specification DSP0266

158 Published Version 1.11.2

• Contain a JSON object in the response body, as described in Error responses, which details the

error or errors.

A service may occasionally send a comment within a stream to keep the connection alive. Services shall

separate events with blank lines. Blank lines should be sent as part of the end of an event, otherwise

dispatch may be delayed in conforming consumers.

The following clauses describe how Redfish uses SSE in different Redfish data model contexts. For

details about SSE, see the HTML5 Specification.

61.2. Event service

A service's implementation of the EventService resource may contain the ServerSentEventUri

property. If a client performs a GET on the URI specified by the ServerSentEventUri property, the

service shall keep the connection open and conform to the HTML5 Specification until the client closes the

socket. Service-generated events shall be sent to the client by using the open connection.

When a client opens an SSE stream for the Event Service, the service shall create an

EventDestination resource in the Subscriptions collection for the Event Service to represent the

connection. The Context property in the EventDestination resource shall be a service-generated

opaque string.

The service shall delete the corresponding EventDestination resource when the connection is closed.

The service shall close the connection if the corresponding EventDestination resource is deleted.

The service shall use the id field in the SSE stream to uniquely identify a payload in the SSE stream. The

value of the id field is determined by the service. A service should accept the Last-Event-ID header

from the client to allow a client to restart the event stream in case the connection is interrupted.

The service shall use the data field in the SSE stream based on the payload format. The SSE streams

have these formats:

• Metric report SSE stream. Services shall use this format when the Telemetry Service generates

or updates a metric report.

• Event message SSE stream. Services shall use this format for all other types of events.

To reduce the amount of data returned to the client, the service should support the $filter query

parameter in the URI for the SSE stream.

Note: The $filter syntax shall follow the format in the $filter query parameter clause.

The service should support these properties as filter criteria:

• EventFormatType

DSP0266 Redfish Specification

Version 1.11.2 Published 159

The service sends events of the matching EventFormatType.

Example:

https://sseuri?$filter=EventFormatType eq Event

Valid values are the EventFormatType enumerated string values that the Redfish

EventService schema defines.

• EventType

The service sends events of the matching EventType.

Example:

https://sseuri?$filter=EventType eq StatusChange

Valid values are the EventType enumerated string values that the Redfish Event schema

defines.

• MessageId

The service sends events with the matching MessageId.

Example:

https://sseuri?$filter=MessageId eq 'Contoso.1.0.TempAssert'

• MetricReportDefinition

The service sends metric reports generated from the MetricReportDefinition.

Example:

https://sseuri?$filter=MetricReportDefinition eq '/redfish/v1/

TelemetryService/MetricReportDefinitions/PowerMetrics'

• OriginResource

The service sends events for the resource.

Redfish Specification DSP0266

160 Published Version 1.11.2

Example:

https://sseuri?$filter=OriginResource eq '/redfish/v1/Chassis/1/Thermal'

• RegistryPrefix

The service sends events with messages that are part of the RegistryPrefix.

Example:

https://sseuri?$filter=(RegistryPrefix eq Resource) or (RegistryPrefix eq

Task)

• ResourceType

The service sends events for resources that match the ResourceType.

Example:

https://sseuri?$filter=(ResourceType eq 'Power') or (ResourceType eq

'Thermal')

• SubordinateResources

When SubordinateResources is true and OriginResource is specified, the service sends

events for the resource and its subordinate resources.

Example:

https://sseuri?$filter=(OriginResource eq '/redfish/v1/Systems/1') and

(SubordinateResources eq true)

61.2.1. Event message SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the Event

object.

The following example payload shows a stream that contains a single event with the id field set to 1, and

a data field that contains a single Event object.

DSP0266 Redfish Specification

Version 1.11.2 Published 161

id: 1

data:{

data: "@odata.type": "#Event.v1_6_0.Event",

data: "Id": "1",

data: "Name": "Event Array",

data: "Context": "ABCDEFGH",

data: "Events": [

data: {

data: "MemberId": "1",

data: "EventType": "Alert",

data: "EventId": "1",

data: "Severity": "Warning",

data: "MessageSeverity": "Warning",

data: "EventTimestamp": "2017-11-23T17:17:42-0600",

data: "Message": "The LAN has been disconnected",

data: "MessageId": "Alert.1.0.LanDisconnect",

data: "MessageArgs": [

data: "EthernetInterface 1",

data: "/redfish/v1/Systems/1"

data:],

data: "OriginOfCondition": {

data: "@odata.id": "/redfish/v1/Systems/1/EthernetInterfaces/1"

data: },

data: "Context": "ABCDEFGH"

data: }

data:]

data:}

61.2.2. Metric report SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the

MetricReport object.

The following example payload shows a stream that contains a metric report with the id field set to 127,

and the data field containing the metric report object.

id: 127

data:{

data: "@odata.id": "/redfish/v1/TelemetryService/MetricReports/

AvgPlatformPowerUsage",

data: "@odata.type": "#MetricReport.v1_3_0.MetricReport",

data: "Id": "AvgPlatformPowerUsage",

data: "Name": "Average Platform Power Usage metric report",

data: "MetricReportDefinition": {

Redfish Specification DSP0266

162 Published Version 1.11.2

data: "@odata.id": "/redfish/v1/TelemetryService/MetricReportDefinitions/

AvgPlatformPowerUsage"

data: },

data: "MetricValues": [

data: {

data: "MetricId": "AverageConsumedWatts",

data: "MetricValue": "100",

data: "Timestamp": "2016-11-08T12:25:00-05:00",

data: "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/

PowerConsumedWatts"

data: },

data: {

data: "MetricId": "AverageConsumedWatts",

data: "MetricValue": "94",

data: "Timestamp": "2016-11-08T13:25:00-05:00",

data: "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/

PowerConsumedWatts"

data: },

data: {

data: "MetricId": "AverageConsumedWatts",

data: "MetricValue": "100",

data: "Timestamp": "2016-11-08T14:25:00-05:00",

data: "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/

PowerConsumedWatts"

data: }

data:]

data:}

62. Update Service

62.1. Overview

This clause covers the mechanism for software updates by using the Update Service.

62.2. Software update types

Clients can use these methods to update software through the Update Service:

• Simple updates: The service pulls the update from a client-indicated network location.

• Multipart HTTP push updates: The client uses HTTP or HTTPS with a multipart-formatted

request body to push a software image to the service.

DSP0266 Redfish Specification

Version 1.11.2 Published 163

62.2.1. Simple updates

A service may support the SimpleUpdate action within the UpdateService resource. A client can

perform a POST to the action target URI to initiate a pull-based update, as define by the

UpdateService schema. After a successful POST, the service should return the HTTP 202 Accepted

status code with the Location header set to the URI of a task monitor. Clients can use this task to

monitor the progress and results of the update, which includes the progress of image transfer to the

service.

62.2.2. Multipart HTTP push updates

A service may support the MultipartHttpPushUri property within the UpdateService resource. A

client can perform an HTTP or HTTPS POST on the URI specified by this property to initiate a push-

based update.

• Access to this URI shall require the same privilege as access to the Update Service.

• A client POST to this URI shall contain the Content-Type HTTP header with the value

multipart/form-data, with the body formatted as defined by this specification. For more

information about multipart/form-data HTTP requests, see RFC7578.

• The client POST request shall contain the binary image as one of the parts in a multipart/

form-data request body, as defined by the following table. In addition, the request shall include

parameters for the update in a JSON formatted part in the same multipart/form-data

request body, as defined by the following table. If the request has no parameters, an empty

JSON object shall be used.

• A service may require the Content-Length HTTP header for POST requests to this URI. In

this case, if a client does not include the required Content-Length header in the POST

request, the service shall return the HTTP 411 Length Required status code.

• A service should return the HTTP 412 Precondition Failed status code if the size of the

binary image is larger than the maximum image size that the service supports, as advertised in

MaxImageSizeBytes property in the UpdateService resource.

• After a successful POST to this URI, the service shall return the HTTP 202 Accepted status

code with a Location header set to the URI of a task monitor. This task can be used by clients

to monitor the progress and results of the update.

The following table describes the requirements of a multipart/form-data request body for HTTP

push software update:

Request

body part

HTTP

headers

Header value and

parameters
Required Description

Update

parameters

Content-

Disposition

form-data;

name="UpdateParameters"
Yes

JSON-formatted part for

passing the update

Redfish Specification DSP0266

164 Published Version 1.11.2

Request

body part

HTTP

headers

Header value and

parameters
Required Description

JSON part

parameters. The value

of the name field shall be

"UpdateParameters".

The format of the JSON

shall follow the definition

of the

UpdateParameters

object in the

UpdateService

schema.

Content-

Type

application/

json;charset=utf-8 or

application/json

Yes

The media type format

and character set of this

request part.

Update file

binary part

Content-

Disposition

form-data;

name="UpdateFile";

filename=string

Yes

Binary file to use for this

software update. The

value of the name field

shall be

"UpdateFile". The

value of the filename

field should reflect the

name of the file as

loaded by the client.

Content-

Type

application/octet-

stream
Yes

The media type format

of the binary update file.

OEM

specific

parts

Content-

Disposition

form-data;

name="OemXXXX"
No

Optional OEM part. The

value of the name field

shall start with "Oem.

Content-Type is

optional, and depends

on the OEM part type.

This example shows a multipart/form-data request to push an update image:

POST /redfish/v1/UpdateService/upload HTTP/1.1

Host: <host-path>

DSP0266 Redfish Specification

Version 1.11.2 Published 165

Content-Type: multipart/form-data; boundary=---------------------------d74496d66958873e

Content-Length: <computed-length>

Connection: keep-alive

X-Auth-Token: <session-auth-token>

-----------------------------d74496d66958873e

Content-Disposition: form-data; name="UpdateParameters"

Content-Type: application/json

{

"Targets": [

"/redfish/v1/Managers/1"

],

"@Redfish.OperationApplyTime": "OnReset",

"Oem": {}

}

-----------------------------d74496d66958873e

Content-Disposition: form-data; name="UpdateFile"; filename="flash.bin"

Content-Type: application/octet-stream

<software image binary>

Redfish Specification DSP0266

166 Published Version 1.11.2

Security details

63. Transport Layer Security (TLS) protocol

Implementations shall support the Transport Layer Security (TLS) protocol v1.2 with RFC7525

recommendations or later. Implementations may remove support for older versions for TLS in favor of

newer versions.

DEPRECATED: Previous versions of this specification allowed for TLS v1.1.

Implementations should support:

• The Storage Networking Industry Association (SNIA) TLS Specification for Storage Systems.

• The latest version of the TLS v1.x specification.

63.1. Cipher suites

Implementations shall only support cipher suites listed as "Recommended" in the TLS Cipher Suites

table defined by the IANA TLS Parameters registry.

Cipher suites that are listed as mandatory in various RFCs, but are not "Recommended" in the TLS

Cipher Suites table defined by the IANA TLS Parameters registry, shall not be supported.

Implementations should consider the support of pre-shared key ciphers suites listed as "Recommended"

in the TLS Cipher Suites table defined by the IANA TLS Parameters registry, which enable

authentication and identification without trusted certificates.

DEPRECATED

Implementations should support AES-256-based ciphers from the TLS suites.

Redfish implementations should consider the support of ciphers, such as the following ciphers, which

enable authentication and identification without trusted certificates:

TLS_PSK_WITH_AES_256_GCM_SHA384

TLS_DHE_PSK_WITH_AES_256_GCM_SHA384

DSP0266 Redfish Specification

Version 1.11.2 Published 167

TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

The advantage of these recommended ciphers is:

AES-GCM is not only efficient and secure, but hardware implementations can achieve high

speeds with low cost and low latency because the mode can be pipelined.

Additionally, Redfish implementations should support the following cipher:

TLS_RSA_WITH_AES_128_CBC_SHA

For more information, see RFC5288 and RFC5487.

END DEPRECATED

63.2. Certificates

Redfish implementations shall support replacement of the default certificate if one is provided.

Redfish implementations shall use certificates that conform to X.509-v3, as defined in RFC5280.

64. Sensitive data

Operations that contain sensitive data should use HTTPS only. For example, a SimpleUpdate action

with a user name and password should use HTTPS to protect the sensitive data.

Properties in service responses that represent sensitive data, such as passwords, shall be null.

Responses from URIs that contain sensitive data may return the HTTP 404 Not Found status code

instead of the HTTP 401 Unauthorized status code or the HTTP 403 Forbidden status code to

prevent attackers from obtaining the sensitive data in the URI.

65. Authentication

Services:

• Shall support both HTTP Basic authentication and Redfish session login authentication.

• Shall use only connections that conform to TLS to transport the data between any third-party

Redfish Specification DSP0266

168 Published Version 1.11.2

authentication service and clients.

• Shall not require a client that uses HTTP Basic authentication to create a session.

• May implement other authentication mechanisms.

65.1. Authentication requirements

65.1.1. Resource and operation authentication requirements

Services shall authenticate all write requests to Redfish resources. For example:

• POST, except to the Sessions resource collection for authentication

• PUT

• PATCH

• DELETE

Redfish resources shall not be available as unauthenticated, except for:

• The service root to identify the device and service locations.

• The Redfish metadata document to get resource types.

• The OData service document for compatibility with OData clients.

• The Redfish OpenAPI YAML document for compatibility with OpenAPI clients.

• The version object at /redfish.

Note: This specification does not cover external services that are linked through external

references. These services may have other security requirements.

65.1.2. HTTP header authentication requirements

An authentication header shall accompany every request that establishes a secure channel.

Services:

• Shall process HTTP headers for authentication before other headers that may affect the

response. For example, ETag, If-Modified, and so on.

• Shall not use HTTP cookies to authenticate any activity, such as GET, POST, PUT, PATCH, and

DELETE.

65.1.3. Authentication failure requirements

When authentication fails, extended error messages shall not provide privileged information.

DSP0266 Redfish Specification

Version 1.11.2 Published 169

65.2. HTTP Basic authentication

Services shall support HTTP Basic authentication, as defined by RFC7617, and shall use only

connections that conform to TLS to transport the data between any third-party authentication service and

clients.

All requests that use HTTP Basic authentication shall require HTTPS.

Note: The IETF has highlighted security concerns with HTTP Basic authentication. While

HTTPS is required for the usage of HTTP Basic authentication, there are other concerns

implementors need to be aware of that are documented in RFC7617.

65.3. Redfish session login authentication

Service shall provide login sessions that conform with this specification.

Session management is determined by the implementation of the Redfish Service, which includes

orphaned session timeout and the management of the number of simultaneous open sessions.

65.3.1. Redfish login sessions

For improved performance and security, a client should use the session management interface to create a

Redfish login session. The session service specifies the URI for session management.

To establish a session, find the URI in either:

• The session service's Sessions property.

• The service root's links property under the Sessions property.

Both URIs shall be the same.

{

"SessionService": {

"@odata.id": "/redfish/v1/SessionService"

},

"Links": {

"Sessions": {

"@odata.id": "/redfish/v1/SessionService/Sessions"

}

},

...

}

Redfish Specification DSP0266

170 Published Version 1.11.2

65.3.2. Session login

To create a Redfish session without an authentication header, perform an HTTP POST request to the

session service's Sessions resource collection. The POST to create a session shall only be supported

with HTTPS. If both HTTP and HTTPS are enabled, a POST request to create a session through the

HTTP port should redirect to the HTTPS port. Include the following POST body:

POST /redfish/v1/SessionService/Sessions HTTP/1.1

Host: <host-path>

Content-Type: application/json;charset=utf-8

Content-Length: <computed-length>

Accept: application/json;charset=utf-8

OData-Version: 4.0

{

"UserName": "<username>",

"Password": "<password>"

}

Fields in brackets are placeholders for client-specific values.

To verify that the request has been initiated from an authorized client domain, services should save the

Origin header in reference to this session creation and compare it to subsequent requests using this

session.

The response to the POST request to create a session shall include:

• X-Auth-Token header. Contains a session authentication token that the client can use in

subsequent requests.

• Location header. Contains a hyperlink to the new Session resource.

• JSON response body. Contains the full representation of the new Session resource.

The following is a sample response of a session being created:

HTTP/1.1 201 Created

Location: /redfish/v1/SessionService/Sessions/1

X-Auth-Token: <session-auth-token>

{

"@odata.id": "/redfish/v1/SessionService/Sessions/1",

"@odata.type": "#Session.v1_0_0.Session",

"Id": "1",

"Name": "User Session",

DSP0266 Redfish Specification

Version 1.11.2 Published 171

"Description": "User Session",

"UserName": "<username>",

"Password": null

}

The client that sends the session login request should save the session authentication token from the X-

Auth-Token header and the contents of the Location header from the response of the login POST

request.

To authenticate subsequent requests, the client sets the X-Auth-Token header to the session

authentication token that the POST login request returns.

Note: The session ID differs from the session authentication token, as follows:

• Session ID: The session ID uniquely identifies the Session resource. The response

data with the last segment of the Location header URI returns is the session ID. To

view active sessions and terminate any session, an administrator with sufficient

privileges can use the session ID.

• Session authentication token: Only the client that executes the login has the session

authentication token.

65.3.3. Session lifetime

Unlike some token-based methods that use token expiration times, Redfish sessions time out. As long as

a client continues to send requests more frequently than the session timeout period, the session remains

open and the session authentication token remains valid. If the session times out, it is automatically

terminated.

65.3.4. Session termination or logout

When the client logs out, the Redfish session terminates. The session terminates through a DELETE

request to the Session resource defined in either the Location header URI or the session ID in the

response data.

This ability to DELETE a session through the Session resource enables an administrator with sufficient

privileges to terminate other users' sessions from a different session.

When a session is terminated, the service shall not affect independent connections established originally

by this session for other purposes, such as connections for Server-Sent Events or transferring an image

for the update service.

Redfish Specification DSP0266

172 Published Version 1.11.2

66. Authorization

66.1. Privilege model

To control which users have access to resources and the type of access that users have, the

authorization subsystem uses roles and privileges.

A role is a defined set of privileges. Two roles with the same privileges shall behave equivalently. Each

user shall be assigned exactly one role.

This Specification defines a set of predefined roles, where Role name is the value of the Id property in

the Role resource:

Role name Assigned privileges

Administrator
Login, ConfigureManager, ConfigureUsers, ConfigureComponents,

ConfigureSelf

Operator Login, ConfigureComponents, ConfigureSelf

ReadOnly Login, ConfigureSelf

Services shall support the previous predefined roles. Services may include OEM privileges in the

predefined roles. The AssignedPrivileges property in the Role resource for the predefined roles

shall not be modifiable.

A service may define additional custom roles. A service may allow users to create custom roles through a

POST to the Roles resource collection.

A predefined role or a custom role shall be assigned to a user when a manager account is created. The

client shall provide the RoleId property when creating a manager account to select the predefined role

or a custom role.

A privilege is a permission to complete an operation, such as read or write, within a defined management

domain, such as configuring users. The AssignedPrivileges array in the Role resource defines a set

of assigned privileges for the associated role. A service may also include OemPrivileges in the Role

resource for additional privileges.

Services shall enforce the same privilege model for ETag-related activity as is enforced for the data being

represented by the ETag. For example, when the activity that requires privileged access to read a data

item that the ETag represents requires the same privileged access to read the ETag.

DSP0266 Redfish Specification

Version 1.11.2 Published 173

66.2. Redfish service operation-to-privilege mapping

For every request that a client makes to a service, the service shall determine that the authenticated

identity of the requester has the authorization to complete the requested operation on the resource in the

request.

Using the role and privileges authorization model where an authenticated identity context is assigned a

role and a role is a set of privileges, the service typically checks an HTTP request against a mapping of

the authenticated requesting identity role and privileges to determine whether the identity privileges are

sufficient to complete the operation in the request.

66.2.1. Why specify operation-to-privilege mapping?

Initial versions of the Redfish Specifications defined several role-to-privilege mappings for standardized

roles and normatively identified several privilege labels but did not normatively detail what these

privileges or how privilege-to-operations mappings could be specified or represented in a normative

fashion.

The lack of a methodology to define which privileges are required to complete a requested operation

against the URI in the request puts at risk the interoperability between service implementations that

clients may encounter due to variances in privilege requirements between implementations.

Also, a lack of methodology for specifying and representing the operation-to-privilege mapping prevents

the Redfish Forum or other governing organizations from normatively defining privilege requirements for a

service.

66.2.2. Representing operation-to-privilege mappings

A service should provide a Privilege Registry in the registry collection. This registry represents the

privileges required to complete HTTP operations against resources supported by the service.

The Privilege Registry is a JSON document that contains a Mappings array of where an individual entry

exists for every resource type that the service supports.

The operation-to-privilege mapping is defined for every resource type and applies to every resource the

service implements for the applicable resource type.

In several situations, specific resources or properties may have differing operation-to-privilege mappings

than the resource type-level mappings. In these cases, the resource type-level mappings need to be

overridden. The PrivilegeRegistry schema defines the methodology for resource type-level

operation-to-privilege mappings and related overrides.

If a service provides a Privilege Registry, the service shall use the Redfish Forum's Privilege Registry

definition as a base operation-to-privilege mapping definition for operations that the service supports to

Redfish Specification DSP0266

174 Published Version 1.11.2

promote interoperability for Redfish clients.

66.2.3. Operation map syntax

An operation map defines the set of privileges required to complete an operation on a resource-type.

The mapped operations are GET, PUT, PATCH, POST, DELETE, and HEAD. A privilege mapping is

defined for each operation, irrespective of whether the service or data model supports the operation on

the resource-type.

The privilege labels may be the Redfish standardized labels that the PrivilegeType enumeration in the

Privileges schema defines and they may be OEM-defined privilege labels. The required privileges for

an operation are specified using logical AND and OR behavior. For more information, see the Privilege

AND and OR syntax clause.

The following example defines the privileges required for various operations on the Manager resource.

Unless the implementation defines mapping overrides to the OperationMap array, the specified

operation-to-privilege mapping represents behavior for all Manager resources in a service

implementation.

{

"Entity": "Manager",

"OperationMap": {

"GET": [

{

"Privilege": ["Login"]

}

],

"HEAD": [

{

"Privilege": ["Login"]

}

],

"PATCH": [

{

"Privilege": ["ConfigureManager"]

}

],

"POST": [

{

"Privilege": ["ConfigureManager"]

}

],

"PUT": [

{

DSP0266 Redfish Specification

Version 1.11.2 Published 175

"Privilege": ["ConfigureManager"]

}

],

"DELETE": [

{

"Privilege": ["ConfigureManager"]

}

]

}

}

66.2.4. Mapping overrides syntax

In several situations, operation-to-privilege mapping varies from the resource type-level mapping.

Situation Description

Property

override

A property has different privilege requirements than the resource in which it resides.

For example, the Password property in the ManagerAccount resource requires

the ConfigureSelf or ConfigureUsers privilege to change, in contrast to the

ConfigureUsers privilege required for the other properties in ManagerAccount

resources. If multiple properties with the same name are present in a resource, the

property override applies to all property instances.

Subordinate

override

A resource is used in context of another resource and the contextual privileges need

to govern. For example, the privileges for PATCH operations on

EthernetInterface resources depend on whether the resource is subordinate to

the Manager resource, where ConfigureManager is required, or the

ComputerSystem resource, where ConfigureComponents is required.

Resource

URI

override

A resource instance has different privilege requirements for an operation than those

defined for the resource type.

The overrides are defined in the context of the operation-to-privilege mapping for a resource type.

If multiple overrides are specified for a single resource type, the following precedence should be used for

determining the appropriate override to apply:

• Property override

• Resource URI override

• Subordinate override

Redfish Specification DSP0266

176 Published Version 1.11.2

66.2.5. Property override example

In the following example, the Password property on the ManagerAccount resource requires the

ConfigureSelf or ConfigureUsers privilege to change, in contrast to the ConfigureUsers

privilege required for the other properties in ManagerAccount resources:

{

"Entity": "ManagerAccount",

"OperationMap": {

"GET": [

{

"Privilege": ["ConfigureManager"]

},

{

"Privilege": ["ConfigureUsers"]

},

{

"Privilege": ["ConfigureSelf"]

}

],

"HEAD": [

{

"Privilege": ["Login"]

}

],

"PATCH": [

{

"Privilege": ["ConfigureUsers"]

}

],

"POST": [

{

"Privilege": ["ConfigureUsers"]

}

],

"PUT": [

{

"Privilege": ["ConfigureUsers"]

}

],

"DELETE": [

{

"Privilege": ["ConfigureUsers"]

}

]

},

DSP0266 Redfish Specification

Version 1.11.2 Published 177

"PropertyOverrides": [

{

"Targets": ["Password"],

"OperationMap": {

"PATCH": [

{

"Privilege": ["ConfigureUsers"]

},

{

"Privilege": ["ConfigureSelf"]

}

]

}

}

]

}

66.2.6. Subordinate override

The Targets property in SubordinateOverrides lists a hierarchical representation for when to apply

the override. In the following example, the override for an EthernetInterface resource is applied

when it is subordinate to an EthernetInterfaceCollection resource, which in turn is subordinate to

a Manager resource. If a client were to PATCH an EthernetInterface resource that matches this

override condition, it requires the ConfigureManager privilege. Otherwise, the client requires the

ConfigureComponents privilege.

{

"Entity": "EthernetInterface",

"OperationMap": {

"GET": [

{

"Privilege": ["Login"]

}

],

"HEAD": [

{

"Privilege": ["Login"]

}

],

"PATCH": [

{

"Privilege": ["ConfigureComponents"]

}

],

Redfish Specification DSP0266

178 Published Version 1.11.2

"POST": [

{

"Privilege": ["ConfigureComponents"]

}

],

"PUT": [

{

"Privilege": ["ConfigureComponents"]

}

],

"DELETE": [

{

"Privilege": ["ConfigureComponents"]

}

]

},

"SubordinateOverrides": [

{

"Targets": [

"Manager",

"EthernetInterfaceCollection"

],

"OperationMap": {

"PATCH": [

{

"Privilege": ["ConfigureManager"]

}

],

"POST": [

{

"Privilege": ["ConfigureManager"]

}

],

"PUT": [

{

"Privilege": ["ConfigureManager"]

}

],

"DELETE": [

{

"Privilege": ["ConfigureManager"]

}

]

}

}

]

}

DSP0266 Redfish Specification

Version 1.11.2 Published 179

66.2.7. Resource URI override

The following example demonstrates the resource URI override syntax to define operation privilege

variations for resource URIs.

The example defines both ConfigureComponents and OEMAdminPriv privileges as required to make

a PATCH operation on the two resource URIs listed as targets.

{

"Entity": "ComputerSystem",

"OperationMap": {

"GET": [

{

"Privilege": ["Login"]

}

],

"HEAD": [

{

"Privilege": ["Login"]

}

],

"PATCH": [

{

"Privilege": ["ConfigureComponents"]

}

],

"POST": [

{

"Privilege": ["ConfigureComponents"]

}

],

"PUT": [

{

"Privilege": ["ConfigureComponents"]

}

],

"DELETE": [

{

"Privilege": ["ConfigureComponents"]

}

]

},

"ResourceURIOverrides": [

{

"Targets": [

"/redfish/v1/Systems/VM6",

Redfish Specification DSP0266

180 Published Version 1.11.2

"/redfish/v1/Systems/Sys1"

],

"OperationMap": {

"GET": [

{

"Privilege": ["Login"]

}

],

"PATCH": [

{

"Privilege": ["ConfigureComponents","OEMSysAdminPriv"]

}

]

}

}

]

}

66.2.8. Privilege AND and OR syntax

The array placement of the privilege labels in the OperationMap GET, HEAD, PATCH, POST, PUT, and

DELETE operation element arrays define the logical combinations of privileges that are required to call an

operation on a resource or property.

For OR logical combinations, the privilege label appears in the operation element array as individual

elements.

The following example defines either Login or OEMPrivilege1 privileges as required to perform a GET

operation.

{

"GET": [

{

"Privilege": ["Login"]

},

{

"Privilege": ["OEMPrivilege1"]

}

]

}

For logical AND combinations, the privilege label appears in the Privilege property array in the

operation element.

DSP0266 Redfish Specification

Version 1.11.2 Published 181

The following example defines both ConfigureComponents and OEMSysAdminPriv as required to

perform a PATCH operation.

{

"PATCH": [

{

"Privilege": ["ConfigureComponents","OEMSysAdminPriv"]

}

]

}

67. Account service

• Implementations should store user passwords with one-way encryption techniques.

• Implementations may support exporting user accounts with passwords, but shall do so using

encryption methods to protect them.

• User accounts shall support ETags and atomic operations. Implementations may reject requests

that do not include an ETag.

• When authentication fails, extended error messages shall not provide privileged information.

67.1. Password management

A Redfish service provides local user accounts through a collection of ManagerAccount resources

located under the account service. The ManagerAccount resources enable users to manage their own

account information, and for administrators to create, delete, and manage other user accounts.

When account properties are changed, the service may close open sessions for this account and require

re-authentication.

67.2. Password change required handling

The service may require that passwords assigned by the manufacturer be changed by the end user prior

to accessing the service. In addition, administrators may require users to change their account's

password upon first access.

The ManagerAccount resource contains a PasswordChangeRequired boolean property to enable

this functionality. Resources that have the property set to true shall require the user to change the write-

only Password property in that resource before access is granted. Manufacturers including user

credentials for the service may use this method to force a change to those credentials before access is

granted.

Redfish Specification DSP0266

182 Published Version 1.11.2

When a client accesses the service by using credentials from a ManagerAccount resource that has a

PasswordChangeRequired value of true, the service shall allow:

• A session login and include a @Message.ExtendedInfo object in the response containing the

PasswordChangeRequired message from the Base Message Registry. This indicates to the

client that their session is restricted to performing only the password change operation before

access is granted.

• A GET operation on the ManagerAccount resource associated with the account.

• A PATCH operation on the ManagerAccount resource associated with the account to update

the Password property. If the value of Password is changed, the service shall also set the

PasswordChangeRequired property to false.

For all other operations, the service shall respond with the HTTP 403 Forbidden status code and

include a @Message.ExtendedInfo object that contains the PasswordChangeRequired message

from the Base Message Registry.

68. Asynchronous tasks

Irrespective of which user or privileged context starts a task, the information in the task object shall

enforce the privileges required to access that object.

69. Event subscriptions

Before pushing event data object to the destination, the service may verify the destination for identity

purposes.

DSP0266 Redfish Specification

Version 1.11.2 Published 183

Redfish Host Interface

The Redfish Host Interface Specification defines how software that runs on a host computer system can

interface with a Redfish Service that manages the host. For details, see DSP0270.

Redfish Specification DSP0266

184 Published Version 1.11.2

Redfish Composability

A service may implement the CompositionService resource off of ServiceRoot to bind resources.

One example is disaggregated hardware, which allows for independent components, such as processors,

memory, I/O controllers, and drives, to be bound together to create logical constructs that operate

together. This enables a client to dynamically assign resources for an application.

A service that supports composability shall implement Resource Blocks, defined by the ResourceBlock

schema, and the Resource Zones, defined in the Zone schema, for the Composition Service. Resource

Blocks provide an inventory of components available to the client for building compositions. Resource

Zones describe the binding restrictions of the Resource Blocks that the service manages.

The Resource Zones within the Composition Service shall include the collection capabilities annotation in

responses. The collection capabilities annotation allows a client to discover which resource collections in

the service support compositions, the different composition request types allowed, and how the POST

request for the resource collection is formatted, as well as what properties are required.

70. Composition requests

A service that implements the Composition Service, as defined by the CompositionService schema,

shall support one or more of the following types of composition requests:

• Specific composition

• Constrained composition

• Expandable resources

A service that supports the removal of a composed resource shall support the DELETE method on the

composed resource.

70.1. Specific composition

A specific composition is when a client identifies an exact set of resources in which to build a logical

entity.

A service that supports specific compositions shall support a POST request that contains an array of

hyperlinks to Resource Blocks. The schema for the resource being composed defines where the

Resource Blocks are specified in the request.

DSP0266 Redfish Specification

Version 1.11.2 Published 185

The following example shows a ComputerSystem being composed with a specific composition request:

POST /redfish/v1/Systems HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"Name": "Sample Composed System",

"Links": {

"ResourceBlocks": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock0"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock2"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/NetBlock4"

}

]

}

}

70.2. Constrained composition

A constrained composition is when a client has identified a set of criteria, or constraints, in which to build

a logical entity. This includes criteria such as quantities of components, or characteristics of components.

A service that supports constrained compositions shall support a POST request that contains the set of

characteristics to apply to the composed resource. The specific format of the request is defined by the

schema for the resource being composed. This type of request may include expanded elements of

resources subordinate to the composed resource.

The following example shows a ComputerSystem being composed with a constrained composition

request:

POST /redfish/v1/Systems HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

Redfish Specification DSP0266

186 Published Version 1.11.2

{

"Name": "Sample Composed System",

"PowerState": "On",

"BiosVersion": "P79 v1.00 (09/20/2013)",

"Processors": {

"Members": [

{

"@Redfish.RequestedCount": 4,

"@Redfish.AllowOverprovisioning": true,

"ProcessorType": "CPU",

"ProcessorArchitecture": "x86",

"InstructionSet": "x86-64",

"MaxSpeedMHz": 3700,

"TotalCores": 8,

"TotalThreads": 16

}

]

},

"Memory": {

"Members": [

{

"@Redfish.RequestedCount": 4,

"CapacityMiB": 8192,

"MemoryType": "DRAM",

"MemoryDeviceType": "DDR4"

}

]

},

"SimpleStorage": {

"Members" : [

{

"@Redfish.RequestedCount": 6,

"Devices": [

{

"CapacityBytes": 322122547200

}

]

}

]

},

"EthernetInterfaces": {

"Members": [

{

"@Redfish.RequestedCount": 1,

"SpeedMbps": 1000,

"FullDuplex": true,

"NameServers": [

DSP0266 Redfish Specification

Version 1.11.2 Published 187

"names.redfishspecification.org"

],

"IPv4Addresses": [

{

"SubnetMask": "255.255.252.0",

"AddressOrigin": "Dynamic",

"Gateway": "192.168.0.1"

}

]

}

]

}

}

70.3. Expandable resources

An expandable resource is when a service has a baseline composition that cannot be removed. Instead

of a client making requests to create a composed resource, a client can only add or remove resources

from the composed resource. A service that supports expandable resources shall support one or more of

the update methods that the Updating a composed resource clause describes.

71. Updating a composed resource

A service that supports updating a composed resource shall provide one or more of the following

methods to update composed resources:

• The PUT or PATCH methods on the composed resource with a modified list of Resource Blocks.

• Actions on the composed resource for adding and removing Resource Blocks.

◦ If the actions for adding and removing Resource Blocks are present in the resource,

clients should use this method before attempting PUT or PATCH.

Redfish Specification DSP0266

188 Published Version 1.11.2

Aggregation

Aggregation has been a Redfish concept since its inception. Redfish uses collection for services that can

represent more than one system. As the scale of Redfish implementations increase, clients want to

operate on Redfish resources in bulk.

Aggregation is the representation of Redfish resources from a variety of sources so that they can be

managed, in whole or in part, by a Redfish client. Membership can be heterogeneous and arbitrary, but it

is expected that most aggregate members will be of the same resource type, such as an aggregate of

ComputerSystem resource, which would be represented by an Aggregate resource whose members

of its Elements array are exclusively of type ComputerSystem. The Redfish service proxies on behalf

of the aggregated components in order to provide common operations. The Redfish service is

representing resources on behalf of the components and incoming operations must be tracked by the

Redfish service before being accomplished by communicating with the individual resources. Thus,

aggregation also allows a Redfish client to act on resources as a group using aggregates.

72. Classes of aggregators

There are at least two classes of Redfish aggregators.

There are implicit aggregators. An example of this might be an enclosure manager, such as a manager of

blades in an enclosure. This implementation has ComputerSystem resources representing blades in the

ComputerSystemCollection resource, and one or more Manager resources in the

ManagerCollection resource. It also would likely have a Chassis resource for each blade and a

Chassis resource for the enclosure, which would use the Contains property in Links to express the

containment relationship to the individual blades. This class of aggregator has tight coupling with system

design, and proxies requests to and from the blades to perform management functions.

There are complex aggregators. An example of this type of aggregator might be a rack level manager,

fabric manager, or a manager of similar scale, especially if it represents resources that it gathers through

the proxy of information from other managers, like BMCs. The sources that this manager aggregates are

more complex in nature and potentially varying. This manager probably has an interface to the resources

and proxies the Redfish service on behalf of each set of resources. At this scale, a Redfish client would

prefer to provide common functions, such as resetting a set of systems, to the Redfish service as a whole

rather than invoking actions individually in order to achieve scalability requirements. This class of service

also may need assistance in adding members to the service, such as providing address and account

information in order for the aggregator to contact the components and initiate the proxy of Redfish

DSP0266 Redfish Specification

Version 1.11.2 Published 189

operations.

72.1. Use cases

There are several use cases that make explicit aggregator representation necessary. What they have in

common is the need for common functions for scalability. There are several classes of these common

functions.

One use case is for service type functions. An example of this would be a firmware update on a large

number of systems. Rather than invoke actions on individual resources, it is more efficient for a client to

indicate the image and the list of resources to which it is applied. In this case, there is already a service in

existence in the model, and so an aggregation service isn't needed. Instead the existing service needs

just be augmented to enable the application to a list of resources.

Another use case is to perform common actions. Examples of this are the Reset or

SetDefaultBootOrder actions. These actions are defined in the ComputerSystem schema, but the

Redfish URI structure requires the action to be on each ComputerSystem resource. Thus there is an

individual operation on each resource. It is more efficient for a client to invoke the action and a list of the

resources to which the action needs to be applied. For example, if one thousand systems need to be

reset, there is significant overhead in performing one thousand individual reset operations than it is to

perform a single operation that specifies the one thousand system to be reset.

A final use case would be to change an attribute on multiple members of a collection. An example of this

might be to change the boot order on a large number of systems. This would require an operation per

system. However, assuming the resources are in the same collection, the deep PATCH operation suffices

to meet the requirements of this use case.

73. Aggregation service

The AggregationService resource is used to represent that this Redfish service provides aggregation

functions.

The aggregation service is used to contain the group actions that can take place on groups of resources.

The AggregationService schema defines the common actions that are available to be performed on

groups of resources by a client. These actions take an array of resource URIs as one of the parameters

to which the action will apply. If all members of the resource array do not support the method, a 4xx

status code shall be returned and the body shall contain an error response. If at least one member of the

resource array successfully completed the action, but others did not, the status code should be 200 OK

with @Message.ExtendedInfo objects for the failed members.

The aggregation service also contains Aggregate, AggregationSource, and ConnectionMethod

resources.

Redfish Specification DSP0266

190 Published Version 1.11.2

73.1. Aggregator requirements

A complex aggregator shall represent it is capable of the following requirements by implementing the

AggregationService resource and including an AggregationSourceCollection resource. If

there is an AggregationService resource with an AggregationSourceCollection resource, the

Redfish service shall:

• Proxy to the aggregated resources on behalf of the service.

• Provide error and state propagation, such as health roll-up, when needed to provide such data to

the parent resource.

• Combine resource collections from the aggregated resources.

◦ For example, ComputerSystem resources that were gathered through proxy shall be

in one ComputerSystemCollection resource.

◦ Services shall perform a "URI fix-up" for all aggregated resources since every system

can't be at /redfish/v1/Systems/1.

◦ It is advisable for Redfish implementations to use unique values for the Id properties.

For example, base the Id property of a ComputerSystem resource on something

unique like a UUID or serial number, or the manufacturer MAC address for network

adapters, or WWN for Fibre Channel controllers.

• Unify other services.

◦ There is only one event service hosted by the aggregation implementation and it shall

combine all of the events into one stream. This is also true for sessions, telemetry,

update service, and other services. Thus the aggregator is representing a unification of

Redfish services that it communicates with and proxies on the client's behalf to the

providers of those services and information.

73.1.1. Aggregates

The Aggregate resource is the grouping mechanism used by clients to indicate to the service that this

group of resources can be treated the same for certain functions, such as the actions. Each aggregate

contains the list of individual resources that are to be treated as a single unit for operations. For example,

if a client wishes to express that a subset of the ComputerSystemCollection resource be treated as a

single unit for certain operations like reset, reset boot order, or firmware update, it can express the

aggregate as the target URI for the operation.

The Aggregate schema defines the common actions that are available to be performed on an aggregate

by a client. The Aggregate resource contains an Elements array that specifies the members of the

aggregate. Actions that are supported on an aggregate but not supported on all Elements, such as a

Reset action that is not supported on an individual member of the Elements array, are not silently

skipped. If all members of the Elements array do not support the method, a 4xx status code shall be

returned and the body shall contain an error response. If at least one member of the Elements array

successfully completed the action, but others did not, the status code should be 200 OK with

DSP0266 Redfish Specification

Version 1.11.2 Published 191

@Message.ExtendedInfo objects for the failed members.

73.2. Aggregation sources and connection methods

The aggregation service model also includes a definition for the information used to access the resources

being represented by the aggregator. Two collections of resources are used to represent this. These are

the AggregationSource and ConnectionMethod resources.

The AggregationSource resource is used to represent the source of information for the resources

being reflected by the aggregator. It typically represents a lower layer service provided by another

manager. It contains information needed to access that source, such as the address and account

information. It also has a reference to the ConnectionMethod resource used to access it.

The ConnectionMethod resource is used to represent the protocol and other semantics required to

communicate with the resources being aggregated. Examples of connection methods are Redfish, IPMI,

and proprietary access methods. For methods such as IPMI, it's also possible to specify the variations

and nuances from multiple vendors.

Redfish Specification DSP0266

192 Published Version 1.11.2

ANNEX A (informative) Change log

Version Date Description

1.11.2 2021-01-18
Clarified that the Accept-Encoding header is used to request

compression of response bodies.

Corrected the PATCH (update), PUT (replace), and DELETE (delete)

clauses to leverage all normative statements for successful operations

found in the Modification success responses clause.

Replaced RFC5988 reference with RFC8288.

Updated IETF links to use the "IETF Tools" site.

Clarified that insert capabilities is just for resource creation.

Fixed ETag examples to be RFC7234-conformant.

Clarified that OEM resources can have subordinate resources.

Replaced RFC4627 reference with RFC8259.

Replaced conflicting statements found in "HTTP redirect authentication

requirements" with general clause for enforcing authentication and

authorization at the target resource.

Clarified behavior of @odata.count when a collection is filtered.

Created standalone "MessageId format" clause.

Removed duplicative text found in the event format table and

referenced the message object clauses as needed.

Corrected the response body specified for a PATCH operation

containing read-only properties.

Added informative text in the intro to the Data model clause describing

the methods for OEM extensions.

Clarified that sensitive data in URIs can be hidden from unauthorized

users by returning HTTP 404 Not Found.

DSP0266 Redfish Specification

Version 1.11.2 Published 193

Version Date Description

Added embedded links to the Location header entry in the response

header table.

Corrected $select example in the The $select query parameter

clause.

Corrected several embedded links to direct to the correct clause.

1.11.1 2020-08-04 Added missing clause requiring sensitive data to be returned as null.

Clarified that Resolution, Severity, and MessageSeverity in

responses can be service-defined and not come from a message

registry.

Relaxed schema rules to require description, long description, URI, and

capabilities annotations only for schemas published or republished by

the DMTF.

Added clauses to Schema modification rules to allow for properties,

actions, parameters, and URIs to be removed, descriptions to be

modified, and pattern and length annotations to be added if not

specified.

Relaxed rule for the OData metadata document to not require, but only

recommend that all referenced namespaces are included in the

document.

Added clause to clarify the usage of empty strings.

Clarified behavior of $skip when the value is greater than or equal to

the number of members in a resource collection.

Corrected the minimum value for $top to align with OData.

Clarified behavior of PATCH for partial success scenarios.

Various clarifications and style fixes to the Aggregation clause.

Clarified that HEAD requests shall be rejected when a query parameter

is provided.

Removed erroneous requirement for ETags to be strong.

1.11.0 2020-04-30 Added Aggregation clause.

Redfish Specification DSP0266

194 Published Version 1.11.2

Version Date Description

Clarified that services are allowed use HTTP 501 Not Implemented

for unsupported HTTP methods.

Clarified the normative semantics around the term "deprecated".

Clarified clauses describing the usage of null for properties versus not

reporting a property.

1.10.0 2020-03-27

Restructured the Security details clause for ease of reading. Other

than the changes listed below, no other changes were intended. Any

clarifications that inadvertently altered the normative behavior are

considered errata, and will be corrected in future revisions to the

specification.

Deprecated TLS v1.1, and set the minimum TLS requirement to be TLS

v1.2 with RFC7525 recommendations.

Deprecated existing cipher suites clause in favor of new clause to

leverage IANA recommendations.

Added requirement for supporting the URI /redfish.

Added support for deep operations.

1.9.1 2020-03-27
Deprecated full ISO8601 duration format in favor of a simplified version

that does not contain years, months, and weeks.

Added missing normative language for how actions with response

bodies are defined in schema.

Added HTTP 201 Created as valid responses for actions.

Clarified the ~ operator for the $expand query parameter to expand

hyperlinks found in all Links properties.

Clarified the * and . operators for the $expand query parameter to

expand hyperlinks found in payload annotations, such as

@Redfish.Settings.

Clarified usage of action parameters that point to resources; the

expectation is a reference object pointing to the resource in question is

passed by the client.

Clarified that DELETE on a resource will likely delete subordinate

resources.

DSP0266 Redfish Specification

Version 1.11.2 Published 195

Version Date Description

Clarified best practices for naming rules, in particular with regards to

acronyms.

Clarified behavior for when individual members of a resource collection

cannot be returned as part of a $expand request.

Clarified usage of @Message.ExtendedInfo in error responses and

provided guidance for clients for handling error responses.

1.9.0 2019-12-06 Made change to no longer require the Server response header.

Added clause to Schema modification rules to allow for the addition of

OEM URIs to standard resources.

Loosened requirements on @odata.type within Oem to not require it in

arrays where the type is used repeatedly.

1.8.1 2019-12-06

Many changes for style consistency, grammar, and general clarity.

Except for the following additions, no normative changes were made.

Any clarifications that inadvertently altered the normative behavior are

considered errata, and will be corrected in future revisions to the

Specification.

Clarified SSE with regards to requiring a blank line after each event.

Clarified order of precedence for resolving multiple operation overrides

within the Privilege Registry.

Clarified cases for property overrides in the Privilege Registry where

multiple objects in the same resource contain the same property name.

Updated references for HTTP Basic authentication to use RFC7617

instead of RFC7235.

Added text/event-stream, application/yaml, and

application/vnd.oai.openapi usage to the Accept and

Content-Type header table entries.

Added clause that provides guidance on service behavior when null is

a property value in POST (create) operations.

Loosened requirements on SSE id based on client usage.

Added documentation for settings, settings apply time, operation apply

Redfish Specification DSP0266

196 Published Version 1.11.2

Version Date Description

time, operation apply time support, maintenance window, collection

capabilities, requested count, allow over-provisioning, zone affinity,

supported certificates, and deprecated terms to the Payload

annotations clause.

Added clauses that document responses for actions with a response

body defined in schema.

Clarified the allowable values payload annotation to show it can be used

for both properties and action parameters.

1.8.0 2019-08-08
Added clause for using /redfish/v1/openapi.yaml as the well-

known URI for the OpenAPI document.

Added clause that specifies non-resource reference properties with Uri

in the name are accessed using Redfish protocol semantics.

Added SubordinateResources $filter parameter for SSE.

Added Update Service clause that describes requirements for the

SimpleUpdate action and the MultipartHttpPushUri property.

1.7.1 2019-08-08
Added statements about the owning entity annotation term and its

usage in schema modifications.

Clarified SSE id from Id in an event payload and EventId within an

event record.

Fixed recommended sequencing of the SSE id to be related to

EventId within an event record.

Clarified that services are allowed to close sessions for an account

when its password has changed.

Corrected the Password management clause to describe how a user

can GET their respective account resources when a password change

is required.

Clarified that registries are not required to return @odata.id.

Clarified that services should use HTTP 400 Bad Request for invalid

query requests.

Clarified that services should use HTTP 400 Bad Request when the

DSP0266 Redfish Specification

Version 1.11.2 Published 197

Version Date Description

only query is being combined with other query parameters.

Clarified that services should use HTTP 400 Bad Request when

query parameters are used on non-GET operations.

Added clause about how to construct enumeration values.

Clarified references to specific messages to also reference their

Message Registry.

Added language about the construction of action names in payloads.

Added informative text for how OEM actions can be defined.

Added guidance for using HTTPS whenever sensitive data is being

transmitted.

Added clause restricting the maximum size of an event payload to be

1MiB.

Clarified that auto expanded resource collections can use paging.

Clarified error response format for SSE.

Clarified that charset=utf-8 is not required within the Content-

Type header for SSE.

Added clause about how URI patterns are constructed.

Added Excerpt term.

1.7.0 2019-05-16

The Specification has been significantly rewritten for clarity. Except for

the following additions, no normative changes were made. Any

clarifications that inadvertently altered the normative behavior are

considered errata, and will be corrected in future revisions to the

Specification.

Added normative statements about how to handle array properties and

PATCH operations on arrays.

Separated data model and schema language clauses.

Added clauses that describe how JSON Schema and OpenAPI files are

formatted.

Added clause that describes the schema versioning methodology.

Redfish Specification DSP0266

198 Published Version 1.11.2

Version Date Description

Added clause about how URI patterns are constructed based on the

resource tree and property hierarchy.

Added Dictionary file naming rules and repository locations.

Enhanced localization definitions and defined repository locations.

Added statement about SSE to the Eventing mechanism clause.

Added Constrained composition and Expandable resources clauses

to Redfish Composability.

Added clause about requiring event subscriptions to be persistent

across service restarts.

Added clause about persistence of tasks generated as a result of using

@Redfish.OperationApplyTime across service restarts.

Added clause about using @Redfish.OperationApplyTime and

@Redfish.MaintenanceWindow within task responses.

Removed @odata.context property from example payloads.

Added Password management clause to describe functional behavior

for restricting access when an account requires a password change.

Added clause around the usage of the HTTP 403 Forbidden status

code when an account requires a password change.

1.6.1 2018-12-13
Added clause about percent encoding being allowed for query

parameters.

Changed $expand example to use SoftwareInventory instead of

LogEntry.

Added clause about the use of a separator for multiple query

parameters.

Fixed $filter examples to use / instead of . for property paths.

Clarified the usage of messages in a successful action response;

provided an example.

Added clarification about services supporting a subset of HTTP

operations on resources specified in schema.

DSP0266 Redfish Specification

Version 1.11.2 Published 199

Version Date Description

Added clarification about services implementing writable properties as

read only.

Added clarification about session termination not affecting connections

opened by the session.

Added "Redfish Provider" term definition.

Updated JSON Schema references to point to Draft 7 of the JSON

Schema Specification.

Added clarifications about scenarios for when a request to add an event

subscription contains conflicting information and how services respond.

Removed language about ignoring the Links property in PATCH

requests.

Clarified usage of ETags to show that a client is not supposed to PATCH

@odata.etag when attempting to use ETag protection for a resource.

Clarified usage of the only query parameter to show it's not to be

combined with $expand and not to be used with singular resources.

Clarified the usage of the HTTP status codes with task monitors.

Various spelling and grammar fixes.

1.6.0 2018-08-23
Added methods of using $filter on the SSE URI for the Event

Service.

Added support for the OpenAPI Specification v3.0. This allows

OpenAPI-conforming software to access Redfish Service

implementations.

Added strict definitions for the URI patterns used for Redfish resources

to support OpenAPI. Each URI is now constructed using a combination

of fixed, defined path segments and the values of Id properties for

resource collections. Also added restrictions on usage of unsafe

characters in URIs. Implementations reporting support for Redfish

v1.6.0 conform to these URI patterns.

Added support for creating and naming Redfish schema files in the

OpenAPI YAML-based format.

Added URI construction rules for OEM extensions.

Redfish Specification DSP0266

200 Published Version 1.11.2

Version Date Description

Changed ETag usage to require strong ETag format.

Added requirement for HTTP Allow header as a response header for

GET and HEAD operations.

Added metric reports as a type of event that can be produced by a

Redfish Service. Added support for SSE streaming of metric reports in

support of new Telemetry Service.

Added registry, resource, origin, or EventFormatType-based event

subscription methods as detailed in the Specification and schema.

Added an EventFormatType to enable additional payload types for

subscription-based or streaming events. Deprecated EventType-based

event subscription mechanism.

Added Event message grouping capability.

Provided guidance for defining and using OEM extensions for

messages and Message Registries.

Added excerpt and only query parameters.

Clarified requirements for resource collection responses, which includes

required properties that were expected, but not listed explicitly in the

Specification.

Made inclusion of the @odata.context annotation optional.

Removed requirement for clients to include the OData-Version HTTP

header in all requests.

1.5.1 2018-08-10
Added clarifications to required properties in structured properties

derived from ReferenceableMembers.

Reorganized Eventing clause to break out the different subscription

methods to differentiate pub-sub from SSE.

Removed statements referencing OData conformance levels.

Clarified terminology to explain usage of absolute versus relative

reference throughout.

Clarified client-side HTTP Accept header requirements.

Added evaluation order for supported query parameters and clarified

DSP0266 Redfish Specification

Version 1.11.2 Published 201

Version Date Description

examples.

Clarified handling of annotations in response payloads when used with

$select queries.

Clarified service handling of annotations in PATCH requests.

Clarified handling of various PATCH request error conditions.

Clarified ability to create resource collection members by POST

operations to the resource collection or the Members array within the

resource.

Corrected several examples to show required properties in payload.

Clarified usage of the Link header and values of rel=describedBy.

Clarified that the HTTP status code table only describes Redfish-

specific behavior and that unless specified, all other usage follows the

definitions within the appropriate RFCs.

Added entry for the HTTP 431 Request Header Fields Too

Large status code.

Added statement that the HTTP 503 Service Unavailable status

code can be used during reboot or reset of a service to indicate that the

service is temporarily unavailable.

Clarified usage of the @odata.type annotation within embedded

objects.

Added statements about the required Name, Id, and MemberId

properties, and the common Description property, which have

always been shown as required in schema files, but which the

Specification did not mention.

Added guidance for the value of time-date properties when time is

unknown.

Added the title property description in actions.

Clarified usage of the @odata.nextLink annotation at the end of

resource collections.

Added additional guidance for naming properties and enumeration

Redfish Specification DSP0266

202 Published Version 1.11.2

Version Date Description

values that contain "OEM" or that include acronyms.

Corrected requirements for description and long description

annotations.

Corrected name of ConfigureComponents in the Operation-to-

privilege mapping clause.

Various typographical errors and grammatical improvements.

1.5.0 2018-04-05
Added support for Server-Sent Eventing for streaming events to web-

based GUIs or other clients.

Added @Redfish.OperationApplyTime annotation to provide a

mechanism for specifying deterministic behavior for the application of

Create, Delete or Action (POST) operations.

1.4.1 2018-04-05 Updated name of the DMTF Forum from SPMF to Redfish Forum.

Consistently used the term, hyperlink.

Added example to clarify usage of $select query parameter with

$expand, and clarified expected results when using AutoExpand.

Corrected order of precedence for $filter parameter options.

Corrected terminology for OEM-defined actions removing "custom" in

favor of OEM, and clarified that the action target property is always

required for an action, along with its usage.

Corrected location header values for responses to data modification

requests that create a task (Task resource vs. task monitor). Clarified

error handling of DELETE operations on Task resources.

Removed references to obsolete and unused Privilege annotation

namespace.

Clarified usage of the Base.1.0.GeneralError message in the

Base Message Registry.

Added durable URIs for registries and profiles, and clarified intended

usage for each folder in the repository. Added file naming conventions

for registries and profiles, and clarified file naming for schemas.

Added statement to clarify that additional headers may be added to M-

DSP0266 Redfish Specification

Version 1.11.2 Published 203

Version Date Description

SEARCH responses for SSDP to enable UPnP compatibility.

Clarified assignment requirements for predefined or custom roles when

new manager account instances are created, using the RoleId

property.

1.4.0 2017-11-17

Added support for optional query parameters ($expand, $filter, and

$select) on requests to enable more efficient retrieval of resources or

properties from a Redfish Service.

Clarified HTTP status and payload responses after successful

processing of data modification requests. This includes POST

operations for performing actions, as well as other POST, PATCH, or

PUT requests.

Added entries for the HTTP 428 Precondition Required and 507

Insufficient Storage status codes to clarify the proper response

to certain error conditions. Added reference links to the HTTP status

code table throughout.

Updated the Abstract to reflect the current state of the Specification.

Added reference to RFC6585 and clarified expected behavior when

ETag support is used in conjunction with PUT or PATCH operations.

Added definition for "Property" term and updated text to use term

consistently.

Added "Client requirement" column and information for HTTP headers

on requests.

Clarified the usage and expected format of the @odata.context

property value.

Added clause to describe how to revise structured properties and

resolve their definitions in schema.

Added more descriptive definition for the settings resource. Added an

example for the SettingsObject. Added description and example for

using the @Redfish.SettingsApplyTime annotation.

Added Action example using the ActionInfo resource in addition to

the simple @Redfish.AllowableValues example. Updated example

to show a proper subset of the available enumerations to reflect a real-

Redfish Specification DSP0266

204 Published Version 1.11.2

Version Date Description

world example.

Added statement explaining the updates required to TaskState upon

task completion.

1.3.0 2017-08-11

Added support for a service to optionally reject a PATCH or PUT

operation if the If-Match or If-Match-None HTTP header is

required by returning the HTTP 428 Precondition Required

status code.

Added support for a service to describe when the values in the settings

object for a resource are applied via the

@Redfish.SettingsApplyTime annotation.

1.2.1 2017-08-10 Clarified wording of the Oem object definition.

Clarified wording of the Partial resource results clause.

Clarified behavior of a service when receiving a PATCH with an empty

JSON object.

Added statement about other uses of the HTTP 503 Service

Unavailable status code.

Clarified format of URI fragments to conform to RFC6901.

Clarified use of absolute and relative URIs.

Clarified definition of the target property as originating from OData.

Clarified distinction between hyperlinks and the links property.

Corrected the JSON example of the privilege map.

Clarified format of the @odata.context property.

Added clauses about the schema file naming conventions.

Clarified behavior of a service when receiving a PUT with missing

properties.

Clarified valid values in the Accept header to include wildcards per

RFC7231.

Corrected ConfigureUser privilege to be spelled ConfigureUsers.

DSP0266 Redfish Specification

Version 1.11.2 Published 205

Version Date Description

Corrected the Session login clause to include normative language.

1.2.0 2017-04-14 Added support for the Redfish Composability Service.

Clarified service handling of the Accept-Encoding header in a

request.

Improved consistency and formatting of example requests and

responses throughout.

Corrected usage of the @odata.type property in response examples.

Clarified usage of the required annotation.

Clarified usage of SubordinateOverrides in the Privilege Registry.

1.1.0 2016-12-09

Added Redfish Service operation-to-privilege mapping clause. This

functionality enables a service to present a resource or even property-

level mapping of HTTP operations to roles and privileges.

Added references to the Redfish Host Interface Specification

(DSP0270).

1.0.5 2016-12-09 Errata release. Various typographical errors.

Corrected the use of collection, resource collection, and members

throughout.

Added glossary entries for resource collection and members.

Corrected certificate requirements to reference definitions and

requirements in RFC5280 and added a normative reference to

RFC5280.

Clarified usage of the HTTP POST and PATCH operations.

Clarified usage of the HTTP status codes and error responses.

1.0.4 2016-08-28 Errata release. Various typographical errors.

Added example of an HTTP Link Header and clarified usage and

content.

Added the Schema modification clause, which describes the allowed

usage of the schema files.

Redfish Specification DSP0266

206 Published Version 1.11.2

Version Date Description

Added recommendation to use TLS 1.2 or later, and to follow the SNIA

TLS Specification. Added reference to the SNIA TLS Specification.

Added additional recommended TLS_RSA_WITH_AES_128_CBC_SHA

cipher suite.

Clarified that the Id property of a Role resource matches the role

name.

1.0.3 2016-06-17

Errata release. Fixed the missing numbering in the table of contents and

clauses. Corrected URL references to external specifications. Added

missing normative references. Corrected typographical error in ETag

example.

Clarified examples for @Message.ExtendedInfo to show arrays of

messages.

Clarified that a POST to Session Service to create a new session does

not require authorization headers.

1.0.2 2016-03-31 Errata release. Various typographical errors.

Corrected normative language for M-SEARCH queries and responses.

Corrected Cache-Control and USN format in M-SEARCH responses.

Corrected schema namespace rules to conform to OData namespace

requirements and updated examples throughout the document to

conform to this format. Specifically, namespace.n.n.n becomes

namespace.vn_n_n. File naming rules for JSON Schema and CSDL

(XML) schemas were also corrected to match this format and to enable

future major (v2) versions to coexist.

Added clause that details the location of the schema repository and lists

the durable URLs for the repository.

Added definition for the value of the Units annotation, using the

definitions from the UCUM Specification. Updated examples throughout

to use this standardized form.

Modified the naming requirements for Oem property naming to avoid

future use of colon : and period . in property names, which can

produce invalid or problematic variable names when used in some

programming languages or environments. Both separators have been

replaced with underscore (_), with colon (:) and period (.) usage now

DSP0266 Redfish Specification

Version 1.11.2 Published 207

Version Date Description

deprecated (but valid).

Removed duplicative or out-of-scope subclauses from the Security

clause, which made unintended requirements on Redfish Service

implementations.

Added the requirement that property names in resource responses

match the casing (capitalization) as specified in schema.

Updated normative references to current HTTP RFCs and added clause

references throughout the document where applicable.

Clarified ETag header requirements.

Clarified that no authentication is required for accessing the Service

Root.

Clarified description of retrieving resource collections.

Clarified usage of charset=utf-8 in the HTTP Accept and

Content-Type headers.

Clarified usage of the Allow HTTP response header and added a table

entry for the Retry-After header usage.

Clarified normative usage of the type property and context property,

explaining the ability to use two URL forms, and corrected the

@odata.context URL examples throughout.

Corrected inconsistent terminology throughout the resource collection

response clause.

Corrected name of normative resource Members property (Members,

not value).

Clarified that error responses may include information about multiple

error conditions.

Corrected name of Measures.Unit annotation term as used in

examples.

Corrected outdated reference to Core OData Specification in annotation

term examples.

Added the Members property to the Common Redfish resource

Redfish Specification DSP0266

208 Published Version 1.11.2

Version Date Description

properties clause.

Clarified terminology and usage of the task monitor and related

operations in the Asynchronous operations clause.

Clarified that implementation of the SSDP protocol is optional.

Corrected typographical error in the SSDP USN field's string definition

(now ::dmtf-org).

Added the OPTIONS method to the allowed HTTP methods list.

Fixed nullablity in example.

1.0.1 2015-09-17 Errata release. Various grammatical corrections.

Clarified normative use of long description in schema files.

Clarified usage of the rel-describedby Link header.

Corrected text in example of "Select List" in OData context property.

Clarified Accept-Encoding request header handling.

Deleted duplicative and conflicting statement on returning extended

error resources.

Clarified relative URI resolution rules.

Clarified USN format.

1.0.0 2015-08-04 Initial release.

DSP0266 Redfish Specification

Version 1.11.2 Published 209

	Redfish Specification
	Foreword
	1. Acknowledgments
	Abstract
	Normative references
	Terms and definitions
	Symbols and abbreviated terms
	Overview
	2. Scope
	3. Goals
	4. Design tenets
	5. Limitations
	6. Additional design background and rationale
	6.1. REST-based interface
	6.2. Data-oriented
	6.3. Separation of protocol from data model
	6.4. Hypermedia API Service Root
	6.5. OpenAPI v3.0 support
	6.6. OData conventions

	7. Service elements
	7.1. Synchronous and asynchronous operation support
	7.2. Eventing mechanism
	7.3. Actions
	7.4. Service discovery
	7.5. Remote access support

	8. Security
	Protocol details
	9. Universal Resource Identifiers
	10. HTTP methods
	11. HTTP redirect
	12. Media types
	13. ETags
	14. Protocol version
	15. Redfish-defined URIs and relative reference rules
	Service requests
	16. Request headers
	17. GET (read requests)
	17.1. Resource collection requests
	17.2. Service Root request
	17.3. OData service and metadata document requests

	18. Query parameters
	18.1. The $expand query parameter
	18.2. The $select query parameter
	18.3. The $filter query parameter

	19. HEAD
	19.1. Data modification requests
	19.2. Modification success responses
	19.3. Modification error responses

	20. PATCH (update)
	21. PATCH on array properties
	22. PUT (replace)
	23. POST (create)
	24. DELETE (delete)
	25. POST (Action)
	26. Operation apply time
	27. Deep operations
	Service responses
	28. Response headers
	29. Link header
	30. Status codes
	31. OData metadata responses
	31.1. OData $metadata
	31.1.1. Referencing other schemas
	31.1.2. Referencing OEM extensions

	31.2. OData service document

	32. Resource responses
	33. Error responses
	Data model
	34. Resources
	35. Resource collections
	36. OEM resources
	37. Common data types
	37.1. Primitive types
	37.2. Empty string values
	37.3. GUID and UUID values
	37.4. Date-Time values
	37.5. Duration values
	37.6. Reference properties
	37.7. Non-resource reference properties
	37.8. Array properties
	37.9. Structured properties
	37.10. Message object
	37.10.1. Overview
	37.10.2. MessageId format

	38. Properties
	38.1. Resource identifier (@odata.id) property
	38.2. Resource type (@odata.type) property
	38.3. Resource ETag (@odata.etag) property
	38.4. Resource context (@odata.context) property
	38.5. Id
	38.6. Name
	38.7. Description
	38.8. MemberId
	38.9. Count (Members@odata.count) property
	38.10. Members
	38.11. Next link (Members@odata.nextLink) property
	38.12. Links
	38.12.1. Reference to a related resource
	38.12.2. References to multiple related resources

	38.13. Actions property
	38.13.1. Action representation
	38.13.2. Action responses

	38.14. Oem
	38.15. Status

	39. Resource, schema, property, and URI naming conventions
	40. Extending standard resources
	40.1. OEM property format and content
	40.2. OEM property naming
	40.3. OEM resource naming and URIs
	40.4. OEM property examples
	40.5. OEM actions

	41. Payload annotations
	41.1. Allowable values
	41.2. Extended information
	41.2.1. Extended object information
	41.2.2. Extended property information

	41.3. Action info annotation
	41.4. Settings and settings apply time annotations
	41.5. Operation apply time and operation apply time support annotations
	41.6. Maintenance window annotation
	41.7. Collection capabilities annotation
	41.8. Requested count and allow over-provisioning annotations
	41.9. Zone affinity annotation
	41.10. Supported certificates annotation
	41.11. Deprecated annotation

	42. Settings resource
	43. Special resource situations
	43.1. Overview
	43.2. Absent resources

	44. Registries
	45. Schema annotations
	45.1. Description annotation
	45.2. Long description annotation
	45.3. Resource capabilities annotation
	45.4. Resource URI patterns annotation
	45.5. Additional properties annotation
	45.6. Permissions annotation
	45.7. Required annotation
	45.8. Required on create annotation
	45.9. Units of measure annotation
	45.10. Expanded resource annotation
	45.11. Owning entity annotation
	45.12. Deprecated annotation

	46. Versioning
	47. Localization
	File naming and publication
	48. Registry file naming
	49. Profile file naming
	50. Dictionary file naming
	51. Localized file naming
	52. DMTF Redfish file repository
	Schema definition languages
	53. OData Common Schema Definition Language
	53.1. File naming conventions for CSDL
	53.2. Core CSDL files
	53.3. CSDL format
	53.3.1. Referencing other CSDL files
	53.3.2. CSDL data services

	53.4. Elements of CSDL namespaces
	53.4.1. Qualified names
	53.4.2. Entity type and complex type elements
	53.4.3. Action element
	53.4.3.1. Action element for OEM actions
	53.4.3.2. Action with a response body

	53.4.4. Property element
	53.4.5. Navigation property element
	53.4.6. Enum type element
	53.4.7. Annotation element

	54. JSON Schema
	54.1. File naming conventions for JSON Schema
	54.2. Core JSON Schema files
	54.3. JSON Schema format
	54.4. JSON Schema definitions body
	54.4.1. Resource definitions in JSON Schema
	54.4.2. Enumerations in JSON Schema
	54.4.3. Actions in JSON Schema
	54.4.3.1. OEM actions in JSON Schema
	54.4.3.2. Action with a response body

	54.5. JSON Schema terms

	55. OpenAPI
	55.1. File naming conventions for OpenAPI schema
	55.2. Core OpenAPI schema files
	55.3. openapi.yaml
	55.4. OpenAPI file format
	55.5. OpenAPI components body
	55.5.1. Resource definitions in OpenAPI
	55.5.2. Enumerations in OpenAPI
	55.5.3. Actions in OpenAPI
	55.5.3.1. OEM actions in OpenAPI

	55.6. OpenAPI terms used by Redfish

	56. Schema modification rules
	Service details
	57. Eventing
	57.1. POST to subscription collection
	57.2. Open an SSE connection
	57.3. EventType-based eventing
	57.4. Subscribing to events
	57.5. Event formats
	57.6. OEM extensions

	58. Asynchronous operations
	59. Resource tree stability
	60. Discovery
	60.1. UPnP compatibility
	60.2. USN format
	60.3. M-SEARCH response
	60.4. Notify, alive, and shutdown messages

	61. Server-Sent Events
	61.1. General
	61.2. Event service
	61.2.1. Event message SSE stream
	61.2.2. Metric report SSE stream

	62. Update Service
	62.1. Overview
	62.2. Software update types
	62.2.1. Simple updates
	62.2.2. Multipart HTTP push updates

	Security details
	63. Transport Layer Security (TLS) protocol
	63.1. Cipher suites
	63.2. Certificates

	64. Sensitive data
	65. Authentication
	65.1. Authentication requirements
	65.1.1. Resource and operation authentication requirements
	65.1.2. HTTP header authentication requirements
	65.1.3. Authentication failure requirements

	65.2. HTTP Basic authentication
	65.3. Redfish session login authentication
	65.3.1. Redfish login sessions
	65.3.2. Session login
	65.3.3. Session lifetime
	65.3.4. Session termination or logout

	66. Authorization
	66.1. Privilege model
	66.2. Redfish service operation-to-privilege mapping
	66.2.1. Why specify operation-to-privilege mapping?
	66.2.2. Representing operation-to-privilege mappings
	66.2.3. Operation map syntax
	66.2.4. Mapping overrides syntax
	66.2.5. Property override example
	66.2.6. Subordinate override
	66.2.7. Resource URI override
	66.2.8. Privilege AND and OR syntax

	67. Account service
	67.1. Password management
	67.2. Password change required handling

	68. Asynchronous tasks
	69. Event subscriptions
	Redfish Host Interface
	Redfish Composability
	70. Composition requests
	70.1. Specific composition
	70.2. Constrained composition
	70.3. Expandable resources

	71. Updating a composed resource
	Aggregation
	72. Classes of aggregators
	72.1. Use cases

	73. Aggregation service
	73.1. Aggregator requirements
	73.1.1. Aggregates

	73.2. Aggregation sources and connection methods

	ANNEX A (informative) Change log

