

 1

Document Identifier: DSP0221 2

Date: 2015-04-16 3

Version: 3.0.1 4

 5

Managed Object Format (MOF) 6

Supersedes: 3.0.0 7

Effective Date: 2015-04-16 8

Document Class: Normative 9

Document Status: Published 10

Document Language: en-US 11
12

Managed Object Format (MOF) DSP0221

2 Published Version 3.0.1

Copyright Notice 13

Copyright © 2012, 2015 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 14

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15
management and interoperability. Members and non-members may reproduce DMTF specifications and 16
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17
time, the particular version and release date should always be noted. 18

Implementation of certain elements of this standard or proposed standard may be subject to third party 19
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 23
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 24
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 25
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 26
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 27
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 28
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 29
implementing the standard from any and all claims of infringement by a patent owner for such 30
implementations. 31

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 32
such patent may relate to or impact implementations of DMTF standards, visit 33
http://www.dmtf.org/about/policies/disclosures.php. 34

http://www.dmtf.org/about/policies/disclosures.php

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 3

Contents 35

Foreword ... 5 36

Introduction.. 6 37

1 Scope .. 7 38

2 Normative references .. 7 39

3 Terms and definitions .. 8 40

4 Symbols and abbreviated terms .. 9 41

5 MOF file content .. 9 42
5.1 Encoding ... 9 43
5.2 Whitespace ... 9 44
5.3 Line termination .. 10 45
5.4 Comments ... 10 46

6 MOF and OCL ... 10 47

7 MOF language elements ... 11 48
7.1 MOF grammar description .. 11 49
7.2 MOF specification ... 12 50
7.3 Compiler directives ... 12 51
7.4 Qualifiers ... 13 52

7.4.1 QualifierList .. 15 53
7.5 Types .. 15 54

7.5.1 Structure declaration .. 15 55
7.5.2 Class declaration ... 16 56
7.5.3 Association declaration .. 17 57
7.5.4 Enumeration declaration .. 17 58
7.5.5 Property declaration ... 19 59
7.5.6 Method declaration .. 20 60
7.5.7 Parameter declaration ... 21 61
7.5.8 Primitive type declarations ... 22 62
7.5.9 Complex type value ... 24 63
7.5.10 Reference type declaration .. 25 64

7.6 Value definitions .. 25 65
7.6.1 Primitive type value .. 25 66
7.6.2 Complex type value ... 29 67
7.6.3 Enum type value .. 29 68
7.6.4 Reference type value ... 30 69

7.7 Names and identifiers ... 30 70
7.7.1 Names .. 30 71
7.7.2 Schema-qualified name ... 30 72
7.7.3 Alias identifier ... 31 73
7.7.4 Namespace name .. 31 74

ANNEX A (normative) MOF keywords ... 32 75

ANNEX B (informative) Datetime values ... 33 76

ANNEX C (informative) Programmatic units .. 35 77

ANNEX D (informative) Example MOF specification ... 38 78

ANNEX E (informative) Change log ... 50 79

Bibliography .. 51 80

 81

Figures 82

Figure D-1 − Classes and association of the GOLF model .. 38 83

Managed Object Format (MOF) DSP0221

4 Published Version 3.0.1

Tables 84

Table 1 – Standard compiler directives ... 13 85

 86

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 5

Foreword 87

The Managed Object Format (MOF) specification (this document) was prepared by the DMTF 88
Architecture Working Group. 89

Versions marked as "DMTF Standard" are approved standards of the Distributed Management Task 90
Force (DMTF). 91

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 92
management and interoperability. For information about the DMTF see http://www.dmtf.org. 93

Acknowledgments 94

The DMTF acknowledges the following individuals for their contributions to this document: 95

Editors: 96

 George Ericson – EMC 97

 Wojtek Kozaczynski – Microsoft 98

Contributors: 99

 Jim Davis – WBEM Solutions 100

 Lawrence Lamers – VMware 101

 Andreas Maier – IBM 102

 Karl Schopmeyer – Inova Development 103

http://www.dmtf.org/

Managed Object Format (MOF) DSP0221

6 Published Version 3.0.1

Introduction 104

This document specifies the DMTF Managed Object Format (MOF), which is a schema description 105
language used for specifying the interface of managed resources (storage, networking, compute, 106
software) conformant with the CIM Metamodel defined in DSP0004. 107

Typographical conventions 108

The following typographical conventions are used in this document: 109

 Document titles are marked in italics. 110

 Important terms that are used for the first time are marked in italics. 111

 Examples are shown in the code blocks. 112

Deprecated material 113

Deprecated material is not recommended for use in new development efforts. Existing and new 114
implementations may use this material, but they should move to the favored approach as soon as 115
possible. CIM services shall implement any deprecated elements as required by this document in order to 116
achieve backwards compatibility. Although CIM clients can use deprecated elements, they are directed to 117
use the favored elements instead. 118

Deprecated material should contain references to the last published version that included it as normative, 119
and to a description of the favored approach. 120

The following typographical convention indicates deprecated material: 121

DEPRECATED 122

Deprecated material appears here. 123

DEPRECATED 124

In places where this typographical convention cannot be used (for example, tables or figures), the 125
"DEPRECATED" label is used alone. 126

Experimental material 127

Experimental material has yet to receive sufficient review to satisfy the adoption requirements set forth by 128
the DMTF. Experimental material included in this document is an aid to implementers who are interested 129
in likely future developments. Experimental material might change as implementation experience is 130
gained. Until included in future documents as normative, all experimental material is purely informational. 131

The following typographical convention indicates experimental material: 132

EXPERIMENTAL 133

Experimental material appears here. 134

EXPERIMENTAL 135

In places where this typographical convention cannot be used (for example, tables or figures), the 136
"EXPERIMENTAL" label is used alone. 137

138

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 7

Managed Object Format (MOF) 139

1 Scope 140

This document describes the syntax, semantics and the use of the Managed Object Format (MOF) 141
language for specifying management models conformant with the DMTF Common Information Model 142
(CIM) Metamodel as defined in DSP0004 version 3.0. 143

The MOF provides the means to write interface definitions of managed resource types including their 144
properties, behavior and relationships with other objects. Instances of managed resource types represent 145
logical concepts like policies, as well as real-world resource such as disk drives, network routers or 146
software components. 147

MOF is used to define industry-standard managed resource types, published by the DMTF as the CIM 148
Schema and other schemas, as well as user/vendor-defined resource types that may or may not be 149
derived from object types defined in schemas published by the DMTF. 150

This document does not describe specific CIM implementations, application programming interfaces 151
(APIs), or communication protocols. 152

2 Normative references 153

The following documents are indispensable for the application of this document. For dated or versioned 154
references, only the cited edition (including any corrigenda or DMTF update versions) applies. For 155
references without a date or version, the latest published edition of the referenced document (including 156
any corrigenda or DMTF update versions) applies. 157

DMTF DSP0004, Common Information Model (CIM) Metamodel 3.0 158
http://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.pdf 159

IETF RFC3986, Unified Resource Identifier (URI): General Syntax, January 2005 160
http://tools.ietf.org/html/rfc3986 161

IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008 162
http://tools.ietf.org/html/rfc5234 163

ISO/IEC 80000-13:2008, Quantities and units, Part13 164
http://www.iso.org/iso/catalogue_detail.htm?csnumber=31898 165

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards 166
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 167

ISO/IEC 10646:2012, Information technology -- Universal Coded Character Set (UCS) 168
http://standards.iso.org/ittf/PubliclyAvailableStandards/c056921_ISO_IEC_10646_2012.zip 169

OMG, Object Constraint Language, Version 2.3.1 170
http://www.omg.org/spec/OCL/2.3.1 171

The Unicode Consortium, Unicode 6.1.0, Unicode Standard Annex #15: Unicode Normalization Forms 172
http://www.unicode.org/reports/tr15/tr15-35.html 173

http://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.pdf
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5234
http://www.iso.org/iso/catalogue_detail.htm?csnumber=31898
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.omg.org/spec/OCL/2.3.1
http://www.unicode.org/reports/tr15/tr15-35.html

Managed Object Format (MOF) DSP0221

8 Published Version 3.0.1

3 Terms and definitions 174

Some terms used in this document have a specific meaning beyond the common English interpretation. 175
Those terms are defined in this clause. 176

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 177
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 178
in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding terms, 179
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 180
ISO/IEC Directives, Part 2 Annex H specifies additional alternatives. Occurrences of such additional 181
alternatives shall be interpreted in their normal English meaning. 182

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 183
described in ISO/IEC Directives, Part 2, Clause 5. 184

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 185
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 186
not contain normative content. Notes and examples are always informative elements. 187

The terms defined in DSP0004 apply to this document. The following additional terms are used in this 188
document. 189

 3.1190

Managed Object Format 191

Refers to the language described in this specification. 192

 3.2193

MOF grammar 194

Refers to the MOF language syntax description included in this document. The MOF grammar is specified 195
using the ABNF (see RFC5234). 196

 3.3197

MOF file 198

Refers to a document with the content that conforms to the MOF syntax described by this specification. 199

 3.4200

MOF compilation unit 201

Refers to a set of MOF files, which includes the files explicitly listed as the input to the MOF compiler and 202
the files directly or transitively included from those input files using the include pragma compiler directive. 203

 3.5204

MOF compiler 205

A MOF compiler takes as input a compilation unit, and in addition can also accept as input a 206
representation of previously compiled types and qualifiers. 207

A MOF compiler transforms types defined in the compilation unit into another representation, like schema 208
repository entries or provider skeletons. 209

A MOF compiler shall verify the consistency of its input; the compiler input shall include definitions of all 210
types that are used by other types, and all super-types of the defined and used types. 211

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 9

4 Symbols and abbreviated terms 212

The abbreviations defined in DSP0004 apply to this document. The following additional abbreviations are 213
used in this document. 214

4.1 215

AST 216

Abstract Syntax Tree 217

4.2 218

MOF 219

Managed Object Format 220

4.3 221

ABNF 222

Augmented BNF (see RFC5234) 223

4.4 224

IDL 225

Interface Definition Language (see ISO/IEC 14750) 226

4.5 227

OCL 228

Object Constraint Language (see OMG Object Constraint Language) 229

5 MOF file content 230

A MOF file contains MOF language statements, compiler directives and comments. 231

5.1 Encoding 232

The content of a MOF file shall be represented in Normalization Form C (Unicode, Annex 15) and in the 233
coded representation form UTF-8 (ISO 10646). 234

The content represented in UTF-8 shall not have a signature sequence (EF BB BF, as defined in Annex H 235
of ISO 10646). 236

5.2 Whitespace 237

Whitespace in a MOF file is any combination of the following characters: 238

 Space (U+0020), 239

 Horizontal Tab (U+0009), 240

 Carriage Return (U+000D) and 241

 Line Feed (U+000A). 242

The WS ABNF rule represents any one of these whitespace characters: 243

WS = U+0020 / U+0009 / U+000D / U+000A 244

Managed Object Format (MOF) DSP0221

10 Published Version 3.0.1

5.3 Line termination 245

The end of a line in a MOF file is indicated by one of the following: 246

 A Carriage Return (U+000D) followed by Line Feed (U+000A) 247

 A Carriage Return (U+000D) not followed by Line Feed (U+000A) 248

 A Line Feed (U+000A) not preceded by a Carriage Return (U+000D) 249

 Implicitly by the end of the MOF specification file, if the line is not ended by line end characters. 250

The different line-end characters may be arbitrarily mixed within a single MOF file. 251

5.4 Comments 252

Comments in a MOF file do not create, modify, or annotate language elements. They shall be treated as if 253
they were whitespace. 254

Comments may appear anywhere in MOF syntax where whitespace is allowed and are indicated by either 255

a leading double slash (//) or a pair of matching /* and */ character sequences. Occurrences of these 256

character sequences in string literals shall not be treated as comments. 257

A // comment is terminated by the end of line (see 5.3), as shown in the example below. 258

Integer MyProperty; // This is an example of a single-line comment 259

A comment that begins with /* is terminated by the next */ sequence, or by the end of the MOF file, 260

whichever comes first. 261

/* example of a comment between property definition tokens and a multi-line comment */ 262

Integer /* 16-bit integer property */ MyProperty; /* and a multi-line 263

 comment */ 264

6 MOF and OCL 265

This MOF language specification refers to OCL in two contexts: 266

 It refers to specific OCL constraints of the CIM Metamodel, which are defined in DSP0004. 267

 A schema specified in MOF may include zero or more OCL qualifiers, where each of those 268
qualifiers contains at least one OCL statement. The statements on a qualifier should be 269
interpreted as a collection. For example a variable defined in one statement can be used in 270
another statement. 271

The OCL rules defined in CIM Metamodel specify the schema integrity rules that a MOF compiler shall 272
check. For example one of those rules states that a structure cannot inherit from another structure that 273
has been qualified as terminal, and therefore MOF compliers shall implement a corresponding model 274
integrity validation rule. The CIM Metamodel constraints are specified in clause 6 of DSP0004 and then 275
listed in ANNEX G of that document. 276

Within a user-defined schema, an OCL qualifier is used to define rules that all instances of the qualified 277
element shall conform to. As an example, consider a class-level OCL qualifier that defines an invariant, 278
which states that one of the class properties must be always greater than another of its properties. The 279
implementations of the schema should assure that all instances of that class satisfy that condition. This 280
has the following implications for the MOF compiler developers and the provider developers: 281

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 11

 The MOF compilers should parse the content of the OCL qualifiers and verify 282

– conformance of the OCL expressions with the OCL syntax defined in the OMG Object 283
Constraint Language 284

– consistency of the statements with the schema elements 285

 The provider developers should implement the logic, which assures that resource instances 286
conform to the requirements specified by the schema, including those specified as the OCL 287
constraints. 288

7 MOF language elements 289

MOF is an interface definition language (IDL) that is implementation language independent, and has 290
syntax that should be familiar to programmers that have worked with other IDLs. 291

A MOF specification includes the following kinds of elements: 292

 Compiler directives that direct the processing of the compilation unit 293

 Qualifier declarations 294

 Type declarations such as classes, structures or enumerations 295

 Instance and value specifications 296

Elements of MOF language are introduced and exemplified one at a time, in a sequence that 297
progressively builds a meaningful MOF specification. To make the examples consistent, the document 298
uses a small, fictitious, and simplified golf club membership schema. The files of the schema are listed in 299
ANNEX E. 300

7.1 MOF grammar description 301

The grammar is defined by using the ABNF notation described in RFC5234. 302

The definition uses the following conventions: 303

 Punctuation terminals like ";" are shown verbatim. 304

 Terminal symbols are spelled in CAPITAL letters when used and then defined in the keywords 305
and symbols section (they correspond to the lexical tokens). 306

The grammar is written to be lexically permissive. This means that some of the CIM Metamodel 307
constraints are expected to be checked over an in-memory MOF representation (the ASTs) after all MOF 308
files in a compilation unit have been parsed. For example, the constraint that a property in a derived class 309
must not have the same name as an inherited property unless it overrides that property (has the Override 310
qualifier) is not encoded in the grammar. Similarly the default values of qualifier definitions are lexically 311
permissive to keep parsing simple. 312

The MOF compiler developers should assume that unless explicitly stated otherwise, the terminal 313
symbols are separated by whitespace (see 5.2). 314

The MOF v3 grammar is written with the objective to minimize the differences between this version the 315
MOF v2 version. The three differences that the MOF compiler developer will have to take into account 316
are: 317

 The qualifier declaration has a different grammar 318

 Arbitrary UCS characters are no longer supported as identifiers 319

 Octetstring values do not have the length bytes at the beginning 320

Managed Object Format (MOF) DSP0221

12 Published Version 3.0.1

 Fixed size arrays are no longer supported 321

 The char16 datatype has been removed 322

7.2 MOF specification 323

A MOF specification defines one or more schema elements and is derived by a MOF compiler from a 324

MOF compilation unit. A MOF specification shall conform to ABNF rule mofSpecification (whitespace 325

as defined in 5.2 is allowed between the elements of the rules in this ABNF section): 326

mofSpecification = *mofProduction 327

mofProduction = compilerDirective / 328

 structureDeclaration / 329

 classDeclaration / 330

 associationDeclaration / 331

 enumerationDeclaration / 332

 instanceValueDeclaration / 333

 structureValueDeclaration / 334

 qualifierTypeDeclaration 335

WS = U+0020 / U+0009 / U+000D / U+000A 336

 ; Space (U+0020), 337

 ; Horizontal Tab (U+0009), 338

 ; Carriage Return (U+000D) and 339

 ; Line Feed (U+000A). 340

7.3 Compiler directives 341

Compiler directives direct the processing of MOF files. Compiler directives do not create, modify, or 342
annotate the language elements. 343

Compiler directives shall conform to the format defined by ABNF rule compilerDirective (whitespace 344

as defined in 5.2 is allowed between the elements of the rules in this ABNF section): 345

compilerDirective = PRAGMA (pragmaName / standardPragmaName) 346

 "(" pragmaParameter ")" 347

pragmaName = directiveName 348

standardPragmaName = INCLUDE 349

pragmaParameter = stringValue ; if the pragma is INCLUDE, 350

 ; the parameter value 351

 ; shall represent a relative 352

 ; or full file path 353

PRAGMA = "#pragma" ; keyword: case insensitive 354

INCLUDE = "include" ; keyword: case insensitive 355

The current standard compiler directives are listed in Table 1. 356

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 13

Table 1 – Standard compiler directives 357

Compiler Directive Description

#pragma include
(<filePath>)

The included directive specifies that the referenced MOF specification file should be
included in the compilation unit. The content of the referenced file shall be textually
inserted in place of the directive.

The included file name can be either an absolute file system path, or a relative path.
If the path is relative, it is relative to the directory of the file with the pragma.

The format of <filePath> is defined in 7.6.1.7.

A MOF compiler may support additional compiler directives. Such new compiler directives are referred to 358
as vendor-specific compiler directives. Vendor-specific compiler directives should have names that are 359
unlikely to collide with the names of standard compiler directives defined in future versions of this 360
specification. Future versions of this specification will not define compiler directives with names that 361
include the underscore (_, U+005F). Therefore, it is recommended that the names of vendor-specific 362
compiler directives conform to the following format (no whitespace is allowed between the elements of 363
this ABNF rule): 364

directiveName = org-id "_" IDENTIFIER 365

where org-id includes a copyrighted, trademarked, or otherwise unique name owned by the business 366

entity that defines the compiler directive or that is a registered ID assigned to the business entity by a 367
recognized global authority. 368

Vendor-specific compiler directives that are not understood by a MOF compiler shall be reported and 369
should be ignored. Thus, the use of vendor-specific compiler directives may affect the interoperability of 370
MOF. 371

7.4 Qualifiers 372

A qualifier is a named and typed metadata element associated with a schema element, such as a class or 373
method, and it provides information about or specifies the behavior of the qualified element. A detailed 374
discussion of the qualifier concept is in subclause 5.6.12 of DSP0004, and the list of standard qualifiers is 375
in clause 7 of DSP0004. 376

NOTE A MOF v2 qualifier declaration has to be converted to MOF v3 qualifierTypeDeclaration because the 377
MOF v2 qualifier flavor has been replaced by the MOF v3 qualifierPolicy. 378

Each qualifier is defined by its qualifier type declaration. The qualifierTypeDeclaration MOF 379

grammar rule corresponds to the QualifierType CIM Metamodel element defined in DSP0004, and is 380
defined by the following ABNF rules (whitespace as defined in 5.2 is allowed between the elements of the 381
rules in this ABNF section): 382

qualifierTypeDeclaration = [qualifierList] QUALIFIER qualifierName ":" 383

 qualifierType qualifierScope 384

 [qualifierPolicy] ";" 385

qualifierName = elementName 386

qualifierType = primitiveQualifierType / enumQualiferType 387

primitiveQualifierType = primitiveType [array] 388

 ["=" primitiveTypeValue] ";" 389

enumQualiferType = enumName [array] "=" enumTypeValue ";" 390

qualifierScope = SCOPE "(" ANY / scopeKindList ")" 391

Managed Object Format (MOF) DSP0221

14 Published Version 3.0.1

qualifierPolicy = POLICY "(" policyKind ")" 392

policyKind = DISABLEOVERRIDE / 393

 ENABLEOVERRIDE / 394

 RESTRICTED 395

scopeKindList = scopeKind *("," scopeKind) 396

scopeKind = STRUCTURE / CLASS / ASSOCIATION / 397

 ENUMERATION / ENUMERATIONVALUE / 398

 PROPERTY / REFPROPERTY / 399

 METHOD / PARAMETER / 400

 QUALIFIERTYPE 401

SCOPE = "scope" ; keyword: case insensitive 402

ANY = "any" ; keyword: case insensitive 403

POLICY = "policy" ; keyword: case insensitive 404

ENABLEOVERRIDE = "enableoverride" ; keyword: case insensitive 405

DISABLEOVERRIDE = "disableoverride" ; keyword: case insensitive 406

RESTRICTED = "restricted" ; keyword: case insensitive 407

ENUMERATIONVALUE = "enumerationvalue" ; keyword: case insensitive 408

PROPERTY = "property" ; keyword: case insensitive 409

REFPROPERTY = "reference" ; keyword: case insensitive 410

METHOD = "method" ; keyword: case insensitive 411

PARAMETER = "parameter" ; keyword: case insensitive 412

QUALIFIERTYPE = "qualifiertype" ; keyword: case insensitive 413

Only numeric and Boolean primitive qualifier types (see primitiveQualifierType above) can be 414

specified without specifying a value. If not specified, the implied value is as follows: 415

 For data type Boolean, the implied value is True. 416

 For numeric data types, the implied value is Null. 417

 For arrays of numeric or Boolean data type, the implied value is that the array is empty. 418

For all other types, including enumeration qualifier types (see enumQualiferType above), the value 419

must be defined. 420

The following MOF fragment is an example of the qualifier type AggregationKind. The AggregationKind 421
qualifier type defines the enumeration values that are used on properties of associations that are 422
references, to indicate the kind of aggregation they represent. The type of the qualifier is an enumeration 423
with three values; None, Shared, and Exclusive. 424

[Description ("The value of this qualifier indicates the kind of aggregation " 425

 "relationship defined between instances of the class containing the qualified " 426

 "reference property and instances referenced by that property. The value may " 427

 "indicate that the kind of aggregation is unspecified.")] 428

Qualifier AggregationKind : CIM_AggregationKindEnum = None 429

 Scope(reference) Flavor (disableoverride); 430

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 15

 431

enumeration CIM_AggregationKindEnum : string { 432

 None, 433

 Shared, 434

 Composite 435

}; 436

7.4.1 QualifierList 437

The qualifierValue rule in MOF corresponds to the Qualifier CIM Metamodel element defined in 438

DSP0004, and defines the representation of an instance of a qualifier. A list of qualifier values describing 439

a schema element shall conform to the following qualifierList ABNF rule (whitespace as defined in 440

5.2 is allowed between the elements of the rules in this ABNF section): 441

qualifierList = "[" qualifierValue *("," qualifierValue) "]" 442

qualifierValue = qualifierName [qualifierValueInitializer / 443

 qualiferValueArrayInitializer] 444

qualifierValueInitializer = "(" literalValue ")" 445

qualiferValueArrayInitializer = "{" literalValue *("," literalValue) "}" 446

The list of qualifier scopes (see the scopeKind rule above) includes "qualifiertype", which implies that 447

qualifier declarations can be themselves qualified. Examples of standard qualifiers that can be used to 448
describe a qualifier declaration are Description and Deprecated. 449

7.5 Types 450

CIM Metamodel defines the following hierarchy of types: 451

 Structure 452

 Class 453

 Association 454

 Enumeration 455

 Primitive type, and 456

 Reference type. 457

CIM Metamodel has a predefined list of primitive types, and their MOF representations are described in 458
7.5.8. 459

Elements of type reference represent references to instances of class. The declarations of properties and 460
method parameters of type reference are described in subclauses 7.5.5 and 7.5.7, respectively. The 461
representation of the reference type value is described in 7.5.10. 462

Structures, classes, associations, and enumerations are types defined in a schema. The following sub-463
clauses describe how those types are declared using MOF. 464

7.5.1 Structure declaration 465

A CIM structure defines a complex type that has no independent identity, but can be used as a type of a 466
property, a method result, or a method parameter. A structure can be also used as a base for a class, in 467
which case the class derived from the structure inherits all of its features. 468

Managed Object Format (MOF) DSP0221

16 Published Version 3.0.1

The syntactic difference between schema level and nested structure declarations is that the schema level 469
declarations must use schema-qualified names. This constraint can be verified after the MOF files have 470
been parsed into the corresponding abstract syntax trees. 471

The structureDeclaration MOF grammar rule corresponds to the Structure CIM metaelement 472

defined in DSP0004 and shall conform to the following set of ABNF rules (whitespace as defined in 5.2 is 473
allowed between the elements of the rules in this ABNF section): 474

structureDeclaration = [qualifierList] STRUCTURE structureName 475

 [superStructure] 476

 "{" *structureFeature "}" ";" 477

structureName = elementName 478

superStructure = ":" structureName 479

structureFeature = structureDeclaration / ; local structure 480

 enumerationDeclaration / ; local enumeration 481

 propertyDeclaration 482

STRUCTURE = "structure" ; keyword: case insensitive 483

Structure is a, possibly empty, collection of properties, local structure declarations, and local enumeration 484
declarations. A structure can derive from another structure (see the superType reflective association of 485
the Type CIM metaelement in DSP0004). A structure can be declared at the schema level, and therefore 486
be globally visible to all other structures, classes and associations, or its declaration can be local to a 487
structure, a class or an association declaration and be visible only in that structure, class, or association 488
and its derived types. 489

7.5.2 Class declaration 490

A class defines properties and methods (the behavior) of its instances, which have unique identity in the 491
scope of a server, a namespace, and the class. A class may also define methods that do not belong to 492
instances of the class, but to the class itself. 493

In the CIM Metamodel the Class metaelement derives from the Structure metaelement, so like a structure 494
a class can define local structures and enumerations that can be used in that class or its subclasses. 495

The classDeclaration MOF grammar rule corresponds to the Class CIM metaelement defined in 496

DSP0004, and shall conform to the following ABNF rules (whitespace as defined in 5.2 is allowed 497
between the elements of the rules in this ABNF section): 498

classDeclaration = [qualifierList] CLASS className [superClass] 499

 "{" *classFeature "}" ";" 500

className = elementName 501

superClass = ":" className 502

classFeature = structureFeature / 503

 methodDeclaration 504

CLASS = "class" ; keyword: case insensitive 505

The propertyDeclaration rule is also described in 7.5.5. 506

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 17

7.5.3 Association declaration 507

An association represents a relationship between two or more classes. The associated classes are 508
specified by the reference properties of the association. Within an association instance each reference 509
property refers to one instance of the referenced class or its subclass. An association instance is the 510
relationship between all referenced class instances. 511

The associationDeclaration MOF grammar rule corresponds to the Association CIM metaelement 512

defined in DSP0004, and shall conform to the following ABNF rules (whitespace as defined in 5.2 is 513
allowed between the elements of the rules in this ABNF section): 514

associationDeclaration = [qualifierList] ASSOCIATION associationName 515

 [superAssociation] 516

 "{" * classFeature "}" ";" 517

associationName = elementName 518

superAssociation = ":" elementName 519

ASSOCIATION = "association" ; keyword: case insensitive 520

In the CIM Metamodel the Association metaelement derives from Class metaelement, and is structurally 521
identical to Class. However an association declaration 522

 must have at least two scalar reference properties, and 523

 each reference property represents a role in the association. 524

The GOLF_MemberLocker is an example of an association with two roles and it represents an 525
assignment of lockers to golf club members. 526

The multiplicity of the association ends can be defined using the Max and Min qualifiers (see the 527
discussion of associations in subclause 6.2.2 of DSP0004). 528

In addition to the grammar rules stated above a MOF compiler shall verify the integrity of association 529
declarations using the applicable CIM Metamodel constraints, which are stated as OCL constraints in 530
clause 6 of DSP0004 and listed in ANNEX G of that document. 531

7.5.4 Enumeration declaration 532

There are two kinds of enumerations in CIM: 533

 Integer enumerations 534

 String enumerations 535

Integer enumerations, which are comparable to enumerations in programming languages, represent 536
enumeration values as distinct integer values. 537

String enumerations, which can be found in UML and are similar to XML enumerations (see XML 538
Schema, Part2: Datatypes), represent enumeration values as distinct string values that in most cases are 539
identical to the values themselves. 540

The enumerationDeclaration MOF grammar rule corresponds to the Enumeration CIM Metamodel 541

element defined in DSP0004, and conforms to the following ABNF rules (whitespace as defined in 5.2 is 542
allowed between the elements of the rules in this ABNF section): 543

Managed Object Format (MOF) DSP0221

18 Published Version 3.0.1

enumerationDeclaration = enumTypeHeader enumName ":" enumTypeDeclaration ";" 544

enumTypeHeader = [qualifierList] ENUMERATION 545

enumName = elementName 546

enumTypeDeclaration = (DT_INTEGER / integerEnumName) integerEnumDeclaration / 547

 (DT_STRING / stringEnumName) stringEnumDeclaration 548

integerEnumName = enumName 549

stringEnumName = enumName 550

integerEnumDeclaration = "{" [integerEnumElement 551

 *("," integerEnumElement)] "}" 552

stringEnumDeclaration = "{" [stringEnumElement 553

 *("," stringEnumElement)] "}" 554

integerEnumElement = [qualifierList] enumLiteral "=" integerValue 555

stringEnumElement = [qualifierList] enumLiteral ["=" stringValue] 556

enumLiteral = IDENTIFIER 557

ENUMERATION = "enumeration" ; keyword: case insensitive 558

The integerEnumElement rule states that integer enumeration elements must have explicit and unique 559

integer values as defined in DSP0004. There are two reasons for the requirement to explicitly assign 560
values to integer enumeration values: 561

 The enumeration values can be declared in any order and, unlike in string enumerations, their 562
value cannot be defaulted 563

 The derived enumerations can define enumeration values, which fill gaps left in their super-564
enumeration(s) 565

The stringEnumElement rule states that the values of string enumeration elements are optional. If not 566

declared the value of a string enumeration value is assigned the name of the value itself. 567

The integerEnumElement and the stringEnumElement rules also state that enumeration values can 568

be qualified. This is most commonly used to add the Description qualifier to individual iteration elements, 569
but the Experimental and Deprecated qualifiers can be also used (see DSP0004 clause 7). 570

As defined in DSP0004, enumerations can be defined at the schema level or inside declarations of 571
structures, classes, or associations. Enumerations defined inside those other types are referred to as the 572
"local" enumeration declarations. All other enumerations are defined at the schema level. The names of 573

schema level enumerations shall conform to the schemaQualifiedName format rule, which requires 574

that their names begin with the name of the scheme followed by the underscore (U+005F). 575

The GOLF schema contains a number of enumeration declarations. An example of local string 576
enumeration is MonthsEnum, which is defined in the structure GOLF_Date. 577

It is a string enumeration, and string enumerations do not require that values are assigned. If a value is 578
not assigned, it is assumed to be identical to the name, so in the example above the value of January is 579
"January". 580

The GOLF_StatesEnum is an example of a schema level string enumeration that assigns explicit values, 581
which are different than the enumeration names. 582

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 19

The following are two schema level integer enumerations GOLF_ProfessionalStatusEnum and 583
GOLF_MemberStatusEnum) that derive from each other. 584

// == 585

// GOLF_ProfessionalStatusEnum 586

// == 587

enumeration GOLF_ProfessionalStatusEnum : Integer 588

{ 589

 Professional = 6, 590

 SponsoredProfessional = 7 591

}; 592

 593

// == 594

// GOLF_MemberStatusEnum 595

// == 596

enumeration GOLF_MemberStatusEnum : GOLF_ProfessionalStatusEnum 597

{ 598

 Basic = 0, 599

 Extended = 1, 600

 VP = 2, 601

}; 602

The example may look a bit contrived, but it illustrates two important points: 603

 The values of the integer enumeration values can be defined in any order. In the example the 604
base enumeration GOLF_ProfessionalStatusEnum defines values 6 and 7, while the derived 605
enumeration GOLF_MemberStatusEnum adds values 0, 1, and 2. 606

 When the type of an enumeration property is overridden in a subclass, the new type can only be 607
the supertype of the overridden type. This is illustrated by the definitions of the 608
GOLF_ClubMember and GOLF_Professional classes and described in the subclause 5.6.3.3 of 609
DSP0004. The reason for this restriction is that an overriding property in a subclass must 610
constrain its values to the same set or a subset of the values of the overridden property. 611

In addition to the grammar rules stated above a MOF compiler shall verify the integrity of enumeration 612
declarations using the applicable CIM Metamodel constraints, which are stated as OCL constraints in 613
subclause 5.6.1 of DSP0004 and listed in ANNEX G of that document. 614

7.5.5 Property declaration 615

The propertyDeclaration in MOF corresponds to the Property CIM metaelement defined in 616

DSP0004 and shall conform to the following ABNF rules (whitespace as defined in 5.2 is allowed between 617
the elements of the rules in this ABNF section): 618

Managed Object Format (MOF) DSP0221

20 Published Version 3.0.1

propertyDeclaration = [qualifierList] (primitivePropertyDeclaration / 619

 complexPropertyDeclaration / 620

 enumPropertyDeclaration / 621

 referencePropertyDeclaration) ";" 622

primitivePropertyDeclaration = primitiveType propertyName [array] 623

 ["=" primitiveTypeValue] 624

complexPropertyDeclaration = structureOrClassName propertyName [array] 625

 ["=" complexTypeValue] 626

enumPropertyDeclaration = enumName propertyName [array] 627

 ["=" enumTypeValue] 628

referencePropertyDeclaration = classReference propertyName [array] 629

 ["=" referenceTypeValue] 630

array = "[" "]" 631

propertyName = IDENTIFIER 632

structureOrClassName = structureName / className 633

The GOLF_Date is an example of a schema-level structure with locally defined enumeration and three 634
properties. All three properties have default values that set the default value of the entire structure to 635
January 1, 2000. 636

The general form of a reference to an enumeration value is qualified with the name of the enumeration, 637
as it is shown in the example of the default value of the Month property of the GOLF_Date structure. 638

GOLF_MonthsEnum Month = MonthsEnum.January 639

However when the enumeration type is implied, as in the example above, a reference to enumeration 640
value can be simplified by omitting the enumeration name. 641

GOLF_MonthsEnum Month = January 642

The use of the GOLF_Date structure as the type of a property is shown in the declaration of the 643
GOLF_ClubMember class; the property is called MembershipEstablishedDate. 644

An example of a local structure is Sponsor, which is defined in the GOLF_Professional class. It can be 645
used only in the GOLF_Professional class or a class that derives from it. 646

In addition to the grammar rules stated above, a MOF compiler shall verify the integrity of structure 647
declarations by using the applicable CIM Metamodel constraints, which are stated as OCL constraints in 648
clause 6 of DSP0004 and listed in ANNEX G of that document. 649

7.5.6 Method declaration 650

The methodDeclaration rule corresponds to the Method CIM metaelement defined in DSP0004, and 651

shall conform to the following ABNF rules (whitespace as defined in 5.2 is allowed between the elements 652
of the rules in this ABNF section): 653

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 21

methodDeclaration = [qualifierList] 654

 ((returnDataType [array]) / VOID) methodName 655

 "(" [parameterList] ")" ";" 656

returnDataType = primitiveType / 657

 structureOrClassName / 658

 enumName / 659

 classReference 660

methodName = IDENTIFIER 661

classReference = DT_REFERENCE 662

VOID = "void" ; keyword: case insensitive 663

parameterList = parameterDeclaration *("," parameterDeclaration) 664

7.5.7 Parameter declaration 665

A method can have zero or more parameters. The parameterDeclaration MOF grammar rule 666

corresponds to the Parameter CIM metaelement in DSP0004, and it shall conform to the following ABNF 667
rules (whitespace as defined in 5.2 is allowed between the elements of the rules in this ABNF section): 668

parameterDeclaration = [qualifierList] (primitiveParamDeclaration / 669

 complexParamDeclaration / 670

 enumParamDeclaration / 671

 referenceParamDeclaration) 672

primitiveParamDeclaration = primitiveType parameterName [array] 673

 ["=" primitiveTypeValue] 674

complexParamDeclaration = structureOrClassName parameterName [array] 675

 ["=" complexTypeValue] 676

enumParamDeclaration = enumName parameterName [array] 677

 ["=" enumTypeValue] 678

referenceParamDeclaration = classReference parameterName [array] 679

 ["=" referenceTypeValue] 680

parameterName = IDENTIFIER 681

A class may define two kinds of methods: 682

 Instance methods, which are invoked on an instance and receive that instance as an 683
additional/implied argument (a concept similar to the "this" method argument in dynamic 684
programming languages 685

 Static methods, designated with the Static qualifier, which can be invoked on an instance of the 686
class or the class, but when invoked on the instance do not get that instance as an additional 687
argument 688

A class can derive from another class, in which case it inherits the enumerations, structures, properties 689
and methods of its superclass. A class can also derive from a structure, in which case it inherits the 690
properties, enumerations, structures of that super-structure. 691

Managed Object Format (MOF) DSP0221

22 Published Version 3.0.1

A class may be designated as abstract by specifying the Abstract qualifier. An abstract class cannot be 692
separately instantiated, but can be the superclass of non-abstract classes that can have instances (see 693
the Class CIM metaelement and the Abstract qualifier in DSP0004 for more details). The GOLF_Base 694
class is an example of an abstract class. 695

Non-abstract classes can have one or more key properties. A key property is specified with the Key 696
qualifier (see the Property CIM metaelement and the Key qualifier in DSP0004 for more details). The key 697
properties of a class instance collectively provide a unique identifier for the class instance within a 698
namespace. 699

The InstanceID property of the GOLF_Base class is an example of a key property. A key property should 700
be of type string, although other primitive types can be used, and must have the Key qualifier. The key 701
property is used by class implementations to uniquely identify instances. 702

The parameter Status in the method GetNumberOfProfessionals of the GOLF_Professional class 703
illustrates parameter default values. CIM v3 introduces the ability to define default values for method 704

parameters (see the primitiveParamDeclaration, structureParamDeclaration, 705

enumParamDeclaration, classParamDeclaration and referenceParamDeclaration MOF 706

grammar rules). 707

The second parameter of the GetNumberOfProfessionals method has the default value 708
MemberStatusEnum.Professional. The parameter default values have been introduced to support method 709
extensions. The idea of the method extensions is as follows: 710

 A derived class may override a method and add a new parameter. 711

 The added parameter is declared with a default value. 712

 A client written against the base class calls the method without that parameter, because it does 713
not know about it. 714

 The class implementation does not error out, but takes the default value of the missing 715
parameter and executes the "extended" method implementation. 716

The example does not illustrate method overriding to keep the example simple. However the 717
GetNumberOfProfessionals method can be called with all three arguments, or only with the NoOfPros 718
and Club arguments. 719

The same mechanism can be used when upgrading a schema, where clients written against a previous 720
schema version can call extended methods in the new version. 721

Method parameters are identified by name and not by position and clients invoking a method can pass 722
the corresponding arguments in any order. Therefore parameters with default values can be added to the 723
method signature at any position. 724

In addition to the grammar rules stated above, a MOF compiler shall verify the integrity of class 725
declarations using the applicable CIM Metamodel constraints, which are stated as OCL constraints in 726
clause 5.6.7 of DSP0004 and listed in ANNEX G of that document. 727

7.5.8 Primitive type declarations 728

CIM defines the following set of primitive data types: 729

 numeric 730

 integer 731

 real 732

 real32, real64 733

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 23

 string 734

 datetime 735

 boolean, and 736

 octetstring 737

Each MOF primitive data type corresponds to a CIM Metamodel element derived from the PrimitiveType 738
metaelement as defined in DSP0004. A MOF primitive data type shall conform to the following 739

primitiveType ABNF rule (whitespace as defined in 5.2 is allowed between the elements of the rules 740

in this ABNF section): 741

primitiveType = DT_INTEGER / 742

 DT_REAL / 743

 DT_STRING / 744

 DT_DATETIME / 745

 DT_BOOLEAN / 746

 DT_OCTETSTRING 747

DT_INTEGER = "integer" ; keyword: case insensitive 748

DT_REAL = DT_REAL32 / 749

 DT_REAL64 / 750

DT_REAL32 = "real32" ; keyword: case insensitive 751

DT_REAL64 = "real64" ; keyword: case insensitive 752

DT_STRING = "string" ; keyword: case insensitive 753

DT_DATETIME = "datetime" ; keyword: case insensitive 754

DT_BOOLEAN = "boolean" ; keyword: case insensitive 755

DT_OCTETSTRING = "octetstring" ; keyword: case insensitive 756

The primitive types are used in the declarations of 757

 Qualifiers types 758

 Properties 759

 Enumerations 760

 Method parameters 761

 Method results 762

Managed Object Format (MOF) DSP0221

24 Published Version 3.0.1

7.5.9 Complex type value 763

The complexTypeValue MOF grammar rule corresponds to the ComplexValue CIM metaelement, and 764

shall conform to the following ABNF rules (whitespace as defined in 5.2 is allowed between the elements 765
of the rules in this ABNF section): 766

NOTE The grammar is not attempting to verify that the type of the property value is consistent with the type of the 767
property to which the value is assigned. For example, if a property type is a structure containing a string and an 768
integer, its value shall be an instance of that structure with a value for its two properties. 769

complexTypeValue = complexValue / complexValueArray 770

complexValueArray = "{" [complexValue *("," complexValue)] "}" 771

complexValue = aliasIdentifier / 772

 (VALUE OF 773

 (structureName / className / associationName) 774

 propertyValueList) 775

propertyValueList = "{" *propertySlot "}" 776

propertySlot = propertyName "=" propertyValue ";" 777

propertyValue = primitiveTypeValue / complexTypeValue / 778

 referenceTypeValue / enumTypeValue 779

alias = AS aliasIdentifier 780

INSTANCE = "instance" ; keyword: case insensitive 781

VALUE = "value" ; keyword: case insensitive 782

AS = "as" ; keyword: case insensitive 783

OF = "of" ; keyword: case insensitive 784

A complex value specification can start with one of two keywords; "instance" or "value". 785

The keyword "value" corresponds to the StructureValue CIM metaelement. It shall be used to define a 786

value of a structure, class, or association that only will be used as the 787

 value of complex property in instances of a class or association, or in structure value 788

 default value of a property 789

 default value of a method parameter 790

The keyword "instance" corresponds to the InstanceSpecification CIM metaelement and shall be used to 791
define an instance of a class or association. 792

The JohnDoe_mof is an example of an instance value that represents a person with the first name "John" 793
and the last name "Doe". 794

Values of structures can be defined in two ways: 795

 By inlining them inside the owner class or structure instance. An example is the value of 796
LastPaymentDate property, or 797

 By defining them separately and giving them aliases. Examples are $JohnDoesPhoneNo and 798
$JohnDoesStartDate, which are first predefined and then used in the definition of the John Doe 799
instance. 800

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 25

The rules for the representation of the values of schema elements of type enumeration or reference are 801
described in 7.6.2 and 7.6.4 respectively. 802

In addition to the grammar rules stated above a MOF compiler shall verify the integrity of value 803
description statements by using the applicable CIM Metamodel constraints, which are stated as OCL 804
constraints in clause 6 of DSP0004 and listed in ANNEX G of that document. 805

7.5.10 Reference type declaration 806

The reference type corresponds to the ReferenceType CIM metaelement. A declaration of a reference 807

type shall conform to ABNF rule DT_REFERENCE (whitespace as defined in 5.2 is allowed between the 808

elements of the rules in this ABNF section): 809

DT_REFERENCE = className REF 810

REF = "ref" ; keyword: case insensitive 811

7.6 Value definitions 812

In MOF a value, or an array of values, can be specified as: 813

 default value of a property or a method parameter 814

 default value of a qualifier type declaration 815

 qualifier value 816

 value of a property in a specification of a structure value or class or association instance 817

MOF divides values into four categories: 818

 Primitive type values 819

 Complex type values 820

 Enumeration type values 821

 Reference type values 822

7.6.1 Primitive type value 823

The primitiveTypeValue MOF grammar rule corresponds to the LiteralSpecification CIM 824

metaelement and represents a single value, or an array of values of the predefined primitive types 825
(whitespace as defined in 5.2 is allowed between the elements of the rules in this ABNF section). 826

primitiveTypeValue = literalValue / literalValueArray 827

literalValueArray = "{" [literalValue *("," literalValue)] "}" 828

literalValue = integerValue / 829

 realValue / 830

 booleanValue / 831

 nullValue / 832

 stringValue 833

 ; NOTE stringValue covers octetStringValue and 834

 ; dateTimeValue 835

The MOF grammar rules for the different types of literals are defined as follows. 836

Managed Object Format (MOF) DSP0221

26 Published Version 3.0.1

7.6.1.1 Integer value 837

No whitespace is allowed between the elements of the rules in this ABNF section. 838

integerValue = binaryValue / octalValue / hexValue / decimalValue 839

binaryValue = ["+" / "-"] 1*binaryDigit ("b" / "B") 840

binaryDigit = "0" / "1" 841

octalValue = ["+" / "-"] unsignedOctalValue 842

unsignedOctalValue = "0" 1*octalDigit 843

octalDigit = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" 844

hexValue = ["+" / "-"] ("0x" / "0X") 1*hexDigit 845

hexDigit = decimalDigit / "a" / "A" / "b" / "B" / "c" / "C" / 846

 "d" / "D" / "e" / "E" / "f" / "F" 847

decimalValue = ["+" / "-"] unsignedDecimalValue 848

unsignedDecimalValue = "0" / positiveDecimalDigit *decimalDigit 849

7.6.1.2 Real value 850

No whitespace is allowed between the elements of the rules in this ABNF section. 851

realValue = ["+" / "-"] *decimalDigit "." 1*decimalDigit 852

 [("e" / "E") ["+" / "-"] 1*decimalDigit] 853

decimalDigit = "0" / positiveDecimalDigit 854

positiveDecimalDigit = 1"..."9" 855

7.6.1.3 String values 856

Unless explicitly specified via ABNF rule WS, no whitespace is allowed between the elements of the rules 857

in this ABNF section. 858

singleStringValue = DOUBLEQUOTE *stringChar DOUBLEQUOTE 859

stringValue = singleStringValue *(*WS singleStringValue) 860

 861

stringChar = stringUCSchar / stringEscapeSequence 862

stringUCSchar = U+0020...U+0021 / U+0023...U+D7FF / 863

 U+E000...U+FFFD / U+10000...U+10FFFF 864

 ; Note that these UCS characters can be 865

 ; represented in XML without any escaping 866

 ; (see W3C XML). 867

stringEscapeSequence = BACKSLASH (BACKSLASH / DOUBLEQUOTE / SINGLEQUOTE / 868

 BACKSPACE_ESC / TAB_ESC / LINEFEED_ESC / 869

 FORMFEED_ESC / CARRIAGERETURN_ESC / 870

 escapedUCSchar) 871

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 27

BACKSPACE_ESC = "b" ; escape for back space (U+0008) 872

TAB_ESC = "t" ; escape for horizontal tab (U+0009) 873

LINEFEED_ESC = "n" ; escape for line feed (U+000A) 874

FORMFEED_ESC = "f" ; escape for form feed (U+000C) 875

CARRIAGERETURN_ESC = "r" ; escape for carriage return (U+000D) 876

escapedUCSchar = ("x" / "X") 1*6(hexDigit) ; escaped UCS 877

 ; character with a UCS code position that is 878

 ; the numeric value of the hex number 879

The following special characters are also used in other ABNF rules in this specification: 880

BACKSLASH = U+005C ; \ 881

DOUBLEQUOTE = U+0022 ; " 882

SINGLEQUOTE = U+0027 ; ' 883

UPPERALPHA = U+0041...U+005A ; A ... Z 884

LOWERALPHA = U+0061...U+007A ; a ... z 885

UNDERSCORE = U+005F ; _ 886

7.6.1.4 OctetString value 887

No whitespace is allowed between the elements of the rules in this ABNF section. 888

octetStringValue = DOUBLEQUOTE "0x" *(octetStringElementValue) 889

 DOUBLEQUOTE 890

 *(*WS DOUBLEQUOTE *(octetStringElementValue) 891

 DOUBLEQUOTE) 892

octetStringElementValue = 2(hexDigit) 893

7.6.1.5 Boolean value 894

No whitespace is allowed between the elements of the rules in this ABNF section. 895

booleanValue = TRUE / FALSE 896

FALSE = "false" ; keyword: case insensitive 897

TRUE = "true" ; keyword: case insensitive 898

7.6.1.6 Null value 899

No whitespace is allowed between the elements of the rules in this ABNF section. 900

nullValue = NULL 901

NULL = "null" ; keyword: case insensitive 902

 ; second 903

Managed Object Format (MOF) DSP0221

28 Published Version 3.0.1

7.6.1.7 File path 904

The filePath ABNF rule defines the format of the file path used as the string value in the INCLUDE 905

compiler directive (see Table 1). 906

The escape mechanisms defined for the stringValue ABNF rule apply. For example, backslash characters 907
in file paths must be escaped. 908

A file path can be either a relative path or a full path. The relative path is in relationship to the directory of 909

the file in which the INCLUDE compiler directive is found. File paths are subject to platform-specific 910

restrictions on the character set used in directory names and on the length of single directory names and 911
the entire file path. 912

MOF compilers shall support both forward and backward slashes in path delimiters, including a mix of 913
both. 914

If the platform has restrictions with respect to these path delimiters, the MOF compiler shall transform the 915
path delimiters to what the platform supports. 916

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 29

No whitespace is allowed between the elements of the rules in this ABNF section. 917

filePath = [absoluteFilePrefix] relativeFilePath 918

relativeFilePath = IDENTIFIER *(pathDelimiter IDENTIFIER) 919

pathDelimiter = "/" / "\" absoluteFilePrefix = rootDirectory / 920

driveLetter 921

rootDirectory = pathDelimiter 922

driveLetter = UPPERALPHA ":" [pathDelimiter] 923

7.6.2 Complex type value 924

Whitespace as defined in 5.2 is allowed between the elements of the rules in this ABNF section. 925

An instanceValueDeclaration is treated as an instruction to create a new instance where the key 926

values of the object do not already exist or an instruction to modify an existing instance where an object 927
with identical key values already exists. The value of the instance may optionally be accessed within the 928
MOF compilation unit. 929

A structureValueDeclaration creates a value that may only be used within a MOF compilation unit. 930

instanceValueDeclaration = INSTANCE OF (className / associationName) 931

 [alias] 932

 propertyValueList ";" 933

 934

structureValueDeclaration = VALUE OF 935

 (className / associationName / structureName) 936

 alias 937

 propertyValueList ";" 938

7.6.3 Enum type value 939

Whitespace as defined in 5.2 is allowed between the elements of the rules in this ABNF section. 940

enumTypeValue = enumValue / enumValueArray 941

enumValueArray = "{" [enumName *("," enumName)] "}" 942

enumValue = [enumName "."] enumLiteral 943

enumLiteral = IDENTIFIER 944

Managed Object Format (MOF) DSP0221

30 Published Version 3.0.1

7.6.4 Reference type value 945

ReferenceTypeValues enable a protocol agnostic serialization of a reference. 946

Whitespace as defined in 5.2 is allowed between the elements of the rules in this ABNF section. 947

referenceTypeValue = objectPathValue / objectPathValueArray 948

objectPathValueArray = "{" [objectPathValue *("," objectPathValue)] 949

 "}" 950

No whitespace is allowed between the elements of the rules in this ABNF section. 951
; Note: objectPathValues are URLs and shall conform to RFC 3986 (Uniform 952

; Resource Identifiers (URI): Generic Syntax) and to the following ABNF. 953

objectPathValue = [namespacePath ":"] instanceId 954

namespacePath = [serverPath] namespaceName 955

; Note: The production rules for host and port are defined in IETF 956

; RFC 3986 (Uniform Resource Identifiers (URI): Generic Syntax). 957

serverPath = (host / LOCALHOST) [":" port] "/" 958

LOCALHOST = "localhost" ; Case insensitive 959

instanceId = className "." instanceKeyValue 960

instanceKeyValue = keyValue *("," keyValue) 961

keyValue = propertyName "=" literalValue 962

7.7 Names and identifiers 963

7.7.1 Names 964

MOF names are identifiers with the format defined by the IDENTIFIER rule. 965

No whitespace is allowed between the elements of the rules in this ABNF section. 966

IDENTIFIER = firstIdentifierChar *(nextIdentifierChar) 967

firstIdentifierChar = UPPERALPHA / LOWERALPHA / UNDERSCORE 968

nextIdentifierChar = firstIdentifierChar / decimalDigit 969

elementName = localName / schemaQualifiedName 970

localName = IDENTIFIER 971

7.7.2 Schema-qualified name 972

To assure schema level uniqueness of the names of structures, classes, associations, enumerations, and 973
qualifiers, CIM follows a naming convention referred to as the schema-qualified names. A schema-974
qualified name starts with a globally unique, preferably registered, string associated with a company, 975
business, or organization followed by the underscore "_". That unique string is referred to as the schema 976
name. The schemaQualifiedName MOF rule defines the format of the schema-qualified names. 977

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 31

No whitespace is allowed between the elements of the rules in this ABNF section. 978

schemaQualifiedName = schemaName UNDERSCORE IDENTIFIER 979

schemaName = firstSchemaChar *(nextSchemaChar) 980

firstSchemaChar = UPPERALPHA / LOWERALPHA 981

nextSchemaChar = firstSchemaChar / decimalDigit 982

7.7.3 Alias identifier 983

An aliasIdentifier identifies an Instance or Value within the context of a MOF compilation unit. 984

No whitespace is allowed between the elements of this rule. 985

aliasIdentifier = "$" IDENTIFIER 986

7.7.4 Namespace name 987

The format of the names of namespaces is defined by the namespaceName MOF rule. 988

No whitespace is allowed between the elements of this rule. 989

namespaceName = IDENTIFIER *("/" IDENTIFIER) 990

Managed Object Format (MOF) DSP0221

32 Published Version 3.0.1

ANNEX A 991

(normative) 992

 993

MOF keywords 994

Below are the MOF keywords, listed in alphabetical order. 995

 996
#pragma

any

as

association

boolean

class

datetime

disableoverride

enableoverride

enumeration

enumerationvalue

false

flavor

include

instance

integer

method

null

octetstring

of

parameter

property

qualifier

real32

real64

ref

restricted

scope

string

structure

true

value

void

 997

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 33

ANNEX B 998

(informative) 999

 1000

Datetime values 1001

The representation of time-related values is defined in DSP0004, clause 5.5.1. The values of the datetime 1002
primitive type have one of two formats: 1003

 timestampValue, which represents a specific moment in time 1004

 durationValue, which represents the length of a time period 1005

No whitespace is allowed between the elements of the rules in this ABNF section. 1006

datetimeValue = timestampValue / durationValue 1007

timestampValue = DOUBLEQUOTE yearMonthDayHourMinSec "." microseconds 1008

 ("+" / "-") datetimeTimezone DOUBLEQUOTE 1009

yearMonthDayHourMinSec = 4Y 2M 2D 2h 2m 2s / 1010

 4Y 2M 2D 2h 2m 2"*" / 1011

 4Y 2M 2D 2h 4"*" / 1012

 4Y 2M 2D 6"*" / 1013

 4Y 2M 8"*" / 1014

 4Y 10"*" / 1015

 14"*" 1016

datetimeTimezone = 3m 1017

durationValue = DOUBLEQUOTE dayHourMinSec "." microseconds 1018

 ":000" DOUBLEQUOTE 1019

dayHourMinSec = 8D 2h 2m 2s / 1020

 8D 2h 2m 2"*" / 1021

 8D 2h 4"*" / 1022

 8D 6"*" / 1023

 14"*" 1024

microseconds = 6decimalDigit / 1025

 5decimalDigit "*" / 1026

 4decimalDigit 2"*" / 1027

 3decimalDigit 3"*" / 1028

 2decimalDigit 4"*" / 1029

 decimalDigit 5"*" / 1030

 6"*" 1031

Y = decimalDigit ; year 1032

M = decimalDigit ; month 1033

D = decimalDigit ; day 1034

Managed Object Format (MOF) DSP0221

34 Published Version 3.0.1

h = decimalDigit ; hour 1035

m = decimalDigit ; minute 1036

s = decimalDigit ; second 1037

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 35

ANNEX C 1038

(informative) 1039

 1040

Programmatic units 1041

The following rules define the string representation of a unit of measurement for programmatic access. 1042
Programmatic unit is described in detail and exemplified in ANNEX D of DSP0004. 1043

The following special characters are used only in programmatic units. 1044

HYPHEN = U+002D ; - 1045

CARET = U+005E ; ^ 1046

COLON = U+003A ; : 1047

PARENS = U+0028 / U+0029 ; (and) 1048

SPACE = U+0020 ; " " 1049

A programmatic unit can be used as a 1050

 value of the PUnit qualifier 1051

 value of a string typed model element qualified with the boolean IsPUnit qualifier 1052

Unless specified via the ABNF rule SPACE, no whitespace is allowed between the elements of the rules in 1053

this ABNF section. 1054

programmaticUnitValue = DOUBLEQUOTE programmaticUnit DOUBLEQUOTE 1055

programmaticUnit = [HYPHEN] *SPACE unitElement 1056

 *(*SPACE unitOperator *SPACE unitElement) 1057

unitElement = (floatingPointNumber / exponentialNumber) / 1058

 [unitPrefix] baseUnit [CARET exponent] 1059

floatingPointNumber = 1*(decimalDigit) ["."] *(decimalDigit) 1060

exponentialNumber = unsignedDecimalValue CARET exponent 1061

 ; shall be interpreted as a floating point number 1062

 ; with the specified decimal base and decimal 1063

 ; exponent and a mantissa of 1 1064

exponent = [HYPHEN] unsignedDecimalValue 1065

unsignedDecimalValue = positiveDecimalDigit *(decimalDigit) 1066

unitOperator = "*" / "/" 1067

unitPrefix = decimalPrefix / binaryPrefix 1068

 ; The numeric equivalents of these prefixes shall 1069

 ; be interpreted as multiplication factors for the 1070

 ; directly succeeding base unit. In other words, 1071

 ; if a prefixed base unit is in the denominator 1072

 ; of the overall programmatic unit, the numeric 1073

Managed Object Format (MOF) DSP0221

36 Published Version 3.0.1

 ; equivalent of that prefix is also in the 1074

 ; denominator. 1075

 1076

; SI decimal prefixes as defined in ISO 1000:1992: 1077

decimalPrefix = "deca" / ; 10^1 1078

 "hecto" / ; 10^2 1079

 "kilo" / ; 10^3 1080

 "mega" / ; 10^6 1081

 "giga" / ; 10^9 1082

 "tera" / ; 10^12 1083

 "peta" / ; 10^15 1084

 "exa" / ; 10^18 1085

 "zetta" / ; 10^21 1086

 "yotta" / ; 10^24 1087

 "deci" / ; 10^-1 1088

 "centi" / ; 10^-2 1089

 "milli" / ; 10^-3 1090

 "micro" / ; 10^-6 1091

 "nano" / ; 10^-9 1092

 "pico" / ; 10^-12 1093

 "femto" / ; 10^-15 1094

 "atto" / ; 10^-18 1095

 "zepto" / ; 10^-21 1096

 "yocto" ; 10^-24 1097

 1098

; IEC binary prefixes as defined in ISO/IEC 80000-13: 1099

binaryPrefix = "kibi" / ; 2^10 1100

 "mebi" / ; 2^20 1101

 "gibi" / ; 2^30 1102

 "tebi" / ; 2^40 1103

 "pebi" / ; 2^50 1104

 "exbi" / ; 2^60 1105

 "zebi" / ; 2^70 1106

 "yobi" ; 2^80 1107

baseUnit = unitIdentifier / extensionUnit 1108

 ; If unitIdentifier begins with a prefix 1109

 ; (see prefix ABNF rule), the meaning of 1110

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 37

 ; that prefix shall not be changed by the extension 1111

 ; base unit (examples of this for standard base 1112

 ; units are "decibel" or "kilogram") 1113

extensionUnit = orgId COLON unitIdentifier 1114

orgId = IDENTIFIER 1115

 ; org-id shall include a copyrighted, trademarked, 1116

 ; or otherwise unique name that is owned by the 1117

 ; business entity that is defining the extension 1118

 ; unit, or that is a registered ID assigned to 1119

 ; the business entity by a recognized global 1120

 ; authority. org-id shall not begin with a prefix 1121

 ; (see prefix ABNF rule). 1122

unitIdentifier = firstUnitChar [*(unitChar) lastUnitChar] 1123

firstUnitChar = UPPERALPHA / LOWERALPHA / UNDERSCORE 1124

lastUnitChar = firstUnitChar / decimalDigit / PARENS 1125

unitChar = lastUnitChar / HYPHEN / SPACE 1126

Managed Object Format (MOF) DSP0221

38 Published Version 3.0.1

ANNEX D 1127

(informative) 1128

 1129

Example MOF specification 1130

 1131

The GOLF model has been created only to illustrate the use of MOF, so some of the design choices may 1132
not be very appealing. The model contains classes and association shown in the diagram below. 1133

 1134

Figure D-1 − Classes and association of the GOLF model 1135

The following is the content of the MOF files in the example GOLF model specification. 1136

D.1 GOLF_Schema.mof 1137

// == 1138

// Copyright 2012 Distributed Management Task Force, Inc. (DMTF). 1139

// Example domain used to illustrate CIM v3 and MOF v3 features 1140

// == 1141

#pragma include ("GOLF_Base.mof") 1142

#pragma include ("GOLF_Club.mof") 1143

#pragma include ("GOLF_ClubMember.mof") 1144

#pragma include ("GOLF_Professional.mof") 1145

#pragma include ("GOLF_Locker.mof") 1146

#pragma include ("GOLF_MemberLocker.mof") 1147

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 39

#pragma include ("GOLF_Lesson.mof") 1148

#pragma include ("GOLF_Tournament.mof") 1149

#pragma include ("GOLF_TournamentParticipant.mof") 1150

// 1151

// Schema level structures 1152

// 1153

#pragma include ("GlobalStructs/GOLF_Address.mof") 1154

#pragma include ("GlobalStructs/GOLF_Date.mof") 1155

#pragma include ("GlobalStructs/GOLF_PhoneNumber.mof") 1156

// 1157

// Global enumerations 1158

// 1159

#pragma include ("GlobalEnums/GOLF_ResultCodeEnum.mof") 1160

#pragma include ("GlobalEnums/GOLF_MemberStatusEnum.mof") 1161

#pragma include ("GlobalEnums/GOLF_ProfessionalStatusEnum.mof") 1162

#pragma include ("GlobalEnums/GOLF_GOLF_StatesEnum.mof") 1163

// 1164

// Instances 1165

// 1166

#pragma include ("Instances/JohnDoe.mof") 1167

D.2 GOLF_Base.mof 1168

// == 1169

// GOLF_Base 1170

// == 1171

 [Abstract, 1172

 OCL { "-- the key property cannot be NULL\n" 1173

 "inv: not InstanceId.oclIsUndefined()", 1174

 "-- in the GOLF model the InstanceId must have exactly " 1175

 "10 characters\n" 1176

 "inv: InstanceId.size() = 10" }] 1177

class GOLF_Base { 1178

// =========================== properties =========================== 1179

 [Description (1180

 "InstanceID is a property that opaquely and uniquely identifies " 1181

 "an instance of a class that derives from the GOLF_Base class. "), 1182

 Key] 1183

 string InstanceID; 1184

 1185

 [Description ("A short textual description (one- line string) of the 1186
instance."), 1187

 MaxLen(64)] 1188

 string Caption = Null; 1189

}; 1190

Managed Object Format (MOF) DSP0221

40 Published Version 3.0.1

D.3 GOLF_Club.mof 1191

// == 1192

// GOLF_Club 1193

// == 1194

 [Description (1195

 "Instances of this class represent golf clubs. A golf club is " 1196

 "an organization that provides member services to golf players " 1197

 "both amateur and professional.")] 1198

class GOLF_Club: GOLF_Base { 1199

// =========================== properties =========================== 1200

 string ClubName; 1201

 GOLF_Date YearEstablished; 1202

 1203

 GOLF_Address ClubAddress; 1204

 GOLF_PhoneNumber ClubPhoneNo; 1205

 GOLF_PhoneNumber ClubFaxNo; 1206

 string ClubWebSiteURL; 1207

 1208

 GOLF_ClubMember REF AllMembers[]; 1209

 1210

// ============================ methods ============================= 1211

 GOLF_ResultCodeEnum AddNonProfessionalMember (1212

 [In] GOLF_ClubMember newMember 1213

); 1214

 GOLF_ResultCodeEnum AddProfessionalMember (1215

 [In] GOLF_Professional newProfessional 1216

); 1217

 Integer GetMembersWithOutstandingFees (1218

 [In] GOLF_Date referenceDate, 1219

 [Out] GOLF_ClubMember REF lateMembers[] 1220

); 1221

 GOLF_ResultCodeEnum TerminateMembership (1222

 [In] GOLF_ClubMember REF memberURI 1223

); 1224

}; 1225

D.4 GOLF_ClubMember.mof 1226

// == 1227

// GOLF_ClubMember 1228

// == 1229

 [Description (1230

 "Instances of this class represent members of a golf club."), 1231

 OCL{"-- a member with Basic status may only have one locker\n" 1232

 "inv: Status = MemberStatusEnum.Basic implies not " 1233

 "(GOLF_MemberLocker.Locker->size() > 1)", 1234

 "inv: not MemberPhoneNo.oclIsUndefined()", 1235

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 41

 "inv: not Club.oclIsUndefined()" }] 1236

class GOLF_ClubMember: GOLF_Base { 1237

 1238

// =========================== properties =========================== 1239

 string FirstName; 1240

 string LastName; 1241

 GOLF_Club REF Club; 1242

 GOLF_MemberStatusEnum Status; 1243

 GOLF_Date MembershipEstablishedDate; 1244

 1245

 real32 MembershipSignUpFee; 1246

 real32 MonthlyFee; 1247

 GOLF_Date LastPaymentDate; 1248

 1249

 GOLF_Address MemberAddress; 1250

 GOLF_PhoneNumber MemberPhoneNo; 1251

 string MemberEmailAddress; 1252

 1253

// ============================ methods ============================= 1254

 GOLF_ResultCodeEnum SendPaymentReminderMessage(); 1255

}; 1256

D.5 GOLF_Professional.mof 1257

// == 1258

// GOLF_Professional 1259

// == 1260

 [Description("instances of this class represent professional members " 1261

 "of the golf club"), 1262

 OCL{"-- to have the sponsored professional status a member must " 1263

 "have at least one sponsor\n" 1264

 "inv: self.Status = SponsoredProfessional implies " 1265

 "\t self.Sponsors->size() > 0" }] 1266

class GOLF_Professional : GOLF_ClubMember { 1267

// ======================== local structures ======================== 1268

 structure Sponsor { 1269

 string Name; 1270

 GOLF_Date ContractSignedDate; 1271

 real32 ContractAmount; 1272

 }; 1273

 1274

// =========================== properties =========================== 1275

 [Override] 1276

 GOLF_ProfessionalStatusEnum Status = Professional; 1277

 Sponsor Sponsors[]; 1278

 Boolean Ranked; 1279

 1280

// ============================ methods ============================= 1281

 [Static] 1282

Managed Object Format (MOF) DSP0221

42 Published Version 3.0.1

 GOLF_ResultCodeEnum GetNumberOfProfessionals (1283

 [Out] Integer NoOfPros, 1284

 [In] GOLF_Club Club, 1285

 [In] ProfessionalStatusEnum Status = Professional 1286

) 1287

}; 1288

D.6 GOLF_Locker.mof 1289

// == 1290

// GOLF_Locker 1291

// == 1292

class GOLF_Locker : GOLF_Base { 1293

 string Location; 1294

 Integer LockerNo; 1295

 real32 MonthlyRentFee; 1296

}; 1297

D.7 GOLF_Tournament.mof 1298

// == 1299

// GOLF_Tournament 1300

// == 1301

 [Description ("Instances of this class represent golf tournaments."), 1302

 OCL {"-- each participant must belong to a represented club\n" 1303

 "inv: self.GOLF_TournamentParticipant.Participant->forAll(p | " 1304

 "self.RepresentedClubs -> includes(p.Club))", 1305

 "-- tournament must be hosted by a club \n" 1306

 "inv: not self.HostClub.oclIsUndefined()" }] 1307

class GOLF_Tournament: GOLF_Base { 1308

// ======================== local structures ======================== 1309

 [OCL {"-- none of the result properties can be undefined or empty \n" 1310

 "inv: not oclIsUndefined(self.ParticipantName) and \n" 1311

 "\t not oclIsUndefined(self.ParticipantGolfClubName) and \n" 1312

 "\t self.FinalPosition > 0)" }] 1313

 structure IndividualResult { 1314

 string ParticipantName; 1315

 string ParticipantGolfClubName; 1316

 unit32 FinalPosition; 1317

 }; 1318

 1319

// =========================== properties =========================== 1320

 string TournamentName; 1321

 string HostingClubName; 1322

 GOLF_Address HostingClubAddress; 1323

 GOLF_PhoneNumber HostingClubPhoneNo; 1324

 string HostingClubWebPage; 1325

 1326

 GOLF_Date StartDate; 1327

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 43

 GOLF_Date EndDate; 1328

 1329

 string Sponsors[]; 1330

 1331

 GOLF_Club REF HostClub; 1332

 GOLF_Club REF RepresentedClubs[]; 1333

 1334

// ============================ methods ============================= 1335

 GOLF_ResultCodeEnum GetResults([Out] IndividualResult results[]); 1336

}; 1337

D.8 GOLF_MemberLocker.mof 1338

// == 1339

// GOLF_MemberLocker 1340

// == 1341

association GOLF_MemberLocker : GOLF_Base { 1342

 [Max(1)] 1343

 GOLF_ClubMember REF Member; 1344

 GOLF_Locker REF Locker; 1345

 GOLF_Date AssignedOnDate; 1346

}; 1347

D.9 GOLF_Lesson.mof 1348

// == 1349

// GOLF_Lesson 1350

// == 1351

 [Description ("Instances of the association represent past and " 1352

 "future golf lessons."), 1353

 OCL {"-- lesson can be given only by a professional who is a member " 1354

 "of the club staff \n" 1355

 "inv: Instructor.GOLF_ProfessionalStaffMember.Club->size() = 1" }] 1356

association GOLF_Lesson : GOLF_Base { 1357

 GOLF_Professional REF Instructor; 1358

 GOLF_ClubMember REF Student; 1359

 1360

 datetime Schedule; 1361

 [Description ("The duration of the lesson")] 1362

 datetime Length = "000000000060**.******:000"; 1363

 string Location; 1364

 [Description (" Cost of the lesson in US$ ")] 1365

 real32 LessonFee; 1366

}; 1367

Managed Object Format (MOF) DSP0221

44 Published Version 3.0.1

D.10 GOLF_ProfessionalMember.mof 1368

// == 1369

// GOLF_ProfessionalMember 1370

// == 1371

 [Description (1372

 "Instances of this association represent club membership " 1373

 "of professional golfers that are not members of the club staff.") 1374

] 1375

association GOLF_ProfessionalMember : GOLF_Base { 1376

 GOLF_Professional REF Professional; 1377

 GOLF_Club REF Club; 1378

}; 1379

D.11 GOLF_ProfessionalStaffMember.mof 1380

// == 1381

// GOLF_ ProfessionalStaffMember 1382

// == 1383

 [Description ("Instances of this association represent club membership " 1384

 "of professional golfers who are members of the club staff " 1385

 "and earn a salary.")] 1386

association GOLF_ProfessionalStaffMember : GOLF_ProfessionalNonStaffMember { 1387

 GOLF_Professional REF Professional; 1388

 GOLF_Club REF Club; 1389

 [Description ("Monthly salary in $US")] 1390

 real32 Salary; 1391

}; 1392

D.12 GOLF_TournamentParticipant.mof 1393

// == 1394

// GOLF_ TournamentParticipant 1395

// == 1396

 [Description ("Instances of this association represent golf members of" 1397

 "golf clubs participating in tournaments."), 1398

 OCL { "-- the club of the participant must be represented in the " 1399
 "tournament \n" 1400

 "inv: Tournament.RepresentedClubs->includes(Participant.Club)" }] 1401

association GOLF_TournamentParticipant : GOLF_Base { 1402

 GOLF_ClubMember REF Participant; 1403

 GOLF_Tournament REF Tournament; 1404

 Integer FinalPosition = 0; 1405

}; 1406

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 45

D.13 GOLF_Address.mof 1407

// == 1408

// GOLF_Address 1409

// == 1410

structure GOLF_Address { 1411

 GOLF_StateEnum State; 1412

 string City; 1413

 string Street; 1414

 string StreetNo; 1415

 string ApartmentNo; 1416

}; 1417

D.14 GOLF_Date.mof 1418

// == 1419

// GOLF_Date 1420

// == 1421

structure GOLF_Date { 1422

// ======================= local enumerations ======================= 1423

 enumeration MonthsEnum : String { 1424

 January, 1425

 February, 1426

 March, 1427

 April, 1428

 May, 1429

 June, 1430

 July, 1431

 August, 1432

 September, 1433

 October, 1434

 November, 1435

 December 1436

 }; 1437

 1438

// =========================== properties =========================== 1439

 Integer Year = 2000; 1440

 MonthsEnum Month = MonthsEnum.January; 1441

 [MinValue(1), MaxValue(31)] 1442

 Integer Day = 1; 1443

}; 1444

D.15 GOLF_PhoneNumber.mof 1445

// == 1446

// GOLF_PhoneNumber 1447

// == 1448

 [OCL { "inv: AreaCode -> size() = 3", 1449

 "inv: Number->size() = 7" }] 1450

Managed Object Format (MOF) DSP0221

46 Published Version 3.0.1

structure GOLF_PhoneNumber { 1451

 Integer AreaCode[]; 1452

 Integer Number[]; 1453

}; 1454

D.16 GOLF_ResultCodeEnum.mof 1455

// == 1456

// GOLF_ResultCodeEnum 1457

// == 1458

enumeration GOLF_ResultCodeEnum : Integer { 1459

 // The operation was successful 1460

 RESULT_OK = 0, 1461

 // A general error occurred, not covered by a more specific error code. 1462

 RESULT_FAILED = 1, 1463

 // Access to a CIM resource is not available to the client. 1464

 RESULT_ACCESS_DENIED = 2, 1465

 // The target namespace does not exist. 1466

 RESULT_INVALID_NAMESPACE = 3, 1467

 // One or more parameter values passed to the method are not valid. 1468

 RESULT_INVALID_PARAMETER = 4, 1469

 // The specified class does not exist. 1470

 RESULT_INVALID_CLASS = 5, 1471

 // The requested object cannot be found. 1472

 RESULT_NOT_FOUND = 6, 1473

 // The requested operation is not supported. 1474

 RESULT_NOT_SUPPORTED = 7, 1475

 // The operation cannot be invoked because the class has subclasses. 1476

 RESULT_CLASS_HAS_CHILDREN = 8, 1477

 // The operation cannot be invoked because the class has instances. 1478

 RESULT_CLASS_HAS_INSTANCES = 9, 1479

 // The operation cannot be invoked because the superclass does not exist. 1480

 RESULT_INVALID_SUPERCLASS = 10, 1481

 // The operation cannot be invoked because an object already exists. 1482

 RESULT_ALREADY_EXISTS = 11, 1483

 // The specified property does not exist. 1484

 RESULT_NO_SUCH_PROPERTY = 12, 1485

 // The value supplied is not compatible with the type. 1486

 RESULT_TYPE_MISMATCH = 13, 1487

 // The query language is not recognized or supported. 1488

 RESULT_QUERY_LANGUAGE_NOT_SUPPORTED = 14, 1489

 // The query is not valid for the specified query language. 1490

 RESULT_INVALID_QUERY = 15, 1491

 // The extrinsic method cannot be invoked. 1492

 RESULT_METHOD_NOT_AVAILABLE = 16, 1493

 // The specified extrinsic method does not exist. 1494

 RESULT_METHOD_NOT_FOUND = 17, 1495

 // The specified namespace is not empty. 1496

 RESULT_NAMESPACE_NOT_EMPTY = 20, 1497

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 47

 // The enumeration identified by the specified context is invalid. 1498

 RESULT_INVALID_ENUMERATION_CONTEXT = 21, 1499

 // The specified operation timeout is not supported by the CIM Server. 1500

 RESULT_INVALID_OPERATION_TIMEOUT = 22, 1501

 // The Pull operation has been abandoned. 1502

 RESULT_PULL_HAS_BEEN_ABANDONED = 23, 1503

 // The attempt to abandon a concurrent Pull operation failed. 1504

 RESULT_PULL_CANNOT_BE_ABANDONED = 24, 1505

 // Using a filter in the enumeration is not supported by the CIM server. 1506

 RESULT_FILTERED_ENUMERATION_NOT_SUPPORTED = 25, 1507

 // The CIM server does not support continuation on error. 1508

 RESULT_CONTINUATION_ON_ERROR_NOT_SUPPORTED = 26, 1509

 // The operation failed because server limits were exceeded. 1510

 RESULT_SERVER_LIMITS_EXCEEDED = 27, 1511

 // The CIM server is shutting down and cannot process the operation. 1512

 RESULT_SERVER_IS_SHUTTING_DOWN = 28 1513

}; 1514

D.17 GOLF_ProfessionalStatusEnum.mof 1515

// == 1516

// GOLF_ProfessionalStatusEnum 1517

// == 1518

enumeration GOLF_ProfessionalStatusEnum : Integer 1519

{ 1520

 Professional = 6, 1521

 SponsoredProfessional = 7 1522

}; 1523

D.18 GOLF_MemberStatusEnum.mof 1524

// == 1525

// GOLF_MemberStatusEnum 1526

// == 1527

enumeration GOLF_MemberStatusEnum : GOLF_ProfessionalStatusEnum 1528

{ 1529

 Basic = 0, 1530

 Extended = 1, 1531

 VP = 2 1532

}; 1533

D.19 GOLF_StatesEnum.mof 1534

// == 1535

// GOLF_StatesEnum 1536

// == 1537

enumeration GOLF_StatesEnum : string { 1538

 AL = "Alabama", 1539

 AK = "Alaska", 1540

 AZ = "Arizona", 1541

Managed Object Format (MOF) DSP0221

48 Published Version 3.0.1

 AR = "Arkansas", 1542

 CA = "California", 1543

 CO = "Colorado", 1544

 CT = "Connecticut", 1545

 DE = "Delaware", 1546

 FL = "Florida", 1547

 GA = "Georgia", 1548

 HI = "Hawaii", 1549

 ID = "Idaho", 1550

 IL = "Illinois", 1551

 IN = "Indiana", 1552

 IA = "Iowa", 1553

 KS = "Kansas", 1554

 LA = "Louisiana", 1555

 ME = "Maine", 1556

 MD = "Maryland", 1557

 MA = "Massachusetts", 1558

 MI = "Michigan", 1559

 MS = "Mississippi", 1560

 MO = "Missouri", 1561

 MT = "Montana", 1562

 NE = "Nebraska", 1563

 NV = "Nevada", 1564

 NH = "New Hampshire", 1565

 NJ = "New Jersey", 1566

 NM = "New Mexico", 1567

 NY = "New York", 1568

 NC = "North Carolina", 1569

 ND = "North Dakota", 1570

 OH = "Ohio", 1571

 OK = "Oklahoma", 1572

 OR = "Oregon", 1573

 PA = "Pennsylvania", 1574

 RI = "Rhode Island", 1575

 SC = "South Carolina", 1576

 SD = "South Dakota", 1577

 TX = "Texas", 1578

 UT = "Utah", 1579

 VT = "Vermont", 1580

 VA = "Virginia", 1581

 WA = "Washington", 1582

 WV = "West Virginia", 1583

 WI = "Wisconsin", 1584

 WY = "Wyoming" 1585

}; 1586

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 49

D.20 JohnDoe.mof 1587

// == 1588

// Instance of GOLF_ClubMember John Doe 1589

// == 1590

 1591

value of GOLF_Date as $JohnDoesStartDate 1592

{ 1593

 Year = 2011; 1594

 Month = July; 1595

 Day = 17; 1596

}; 1597

 1598

value of GOLF_PhoneNumber as $JohnDoesPhoneNo 1599

{ 1600

 AreaCode = {"9", "0", "7"}; 1601

 Number = {"7", "4", "7", "4", "8", "8", "4"}; 1602

}; 1603

 1604

instance of GOLF_ClubMember 1605

{ 1606

 Caption = "Instance of John Doe\'s GOLF_ClubMember object"; 1607

 FirstName = "John"; 1608

 LastName = "Doe"; 1609

 Status = Basic; 1610

 MembershipEstablishedDate = $JohnDoesStartDate; 1611

 MonthlyFee = 250.00; 1612

 LastPaymentDate = instance of GOLF_Date 1613

 { 1614

 Year = 2011; 1615

 Month = July; 1616

 Day = 31; 1617

 }; 1618

 MemberAddress = value of GOLF_Address 1619

 { 1620

 State = IL; 1621

 City = "Oak Park"; 1622

 Street = "Oak Park Av."; 1623

 StreetNo = "1177"; 1624

 ApartmentNo = "3B"; 1625

 }; 1626

 MemberPhoneNo = $JohnDoesPhoneNo; 1627

 MemberEmailAddress = "JonDoe@hotmail.com"; 1628

}; 1629

Managed Object Format (MOF) DSP0221

50 Published Version 3.0.1

ANNEX E 1630

(informative) 1631

 1632

Change log 1633

In earlier versions of CIM the MOF specification was part of the DSP0004. See ANNEX I in DSP0004 for 1634
the change log of the CIM specification. 1635

 1636

Version Date Description

3.0.0 2012-12-13

3.0.1 2015-04-16 Errata:

 Remove integer subclasses

 Intervalue did not recognize 0

 octetValue and datatimeValue indistinguishable from stringValue. They
are removed from literalValue rule.

 enumDeclaration changed to enumerationDeclaration for consistency

 Fixed syntax of instanceValueDeclaration and structureValueDeclaration

 Clarify that objectPath is a URL and therefore cannot contain whitespace.

 Rearranged to remove mostly redundant Annex A. This also assures no
inconsistencies between main text and Annex.

 Fixes for several syntax errors

DSP0221 Managed Object Format (MOF)

Version 3.0.1 Published 51

Bibliography 1637

ISO/IEC 14750:1999, Information technology – Open Distributed Processing – Interface Definition 1638
Language 1639
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25486 1640

OMG, UML Superstructure Specification, Version 2.1.1 1641
http://www.omg.org/cgi-bin/doc?formal/07-02-05 1642

W3C, XML Schema, Part 2: Datatypes (Second Edition), W3C Recommendation 28 October 2004 1643
http://www.w3.org/TR/xmlschema-2/ 1644

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25486
http://www.omg.org/cgi-bin/doc?formal/07-02-05
http://www.w3.org/TR/xmlschema-2/

	Ref_DMTF_DSP0004
	Ref_DMTF_DSP0223
	Ref_DMTF_DSP1001
	Ref_IETF_RFC3986
	Ref_IETF_RFC5234
	Ref_ISO_IEC_80000_13
	Ref_ISO_IEC_Part_2
	Ref_ISO_IEC_10646
	Ref_OMG_OCL
	Ref_Unicode_Annex_15
	Term_Managed_Object_Format
	Term_MOF_grammar
	Term_MOF_file
	Term_MOF_compilation_unit
	Term_MOF_compiler
	Term_AST
	Term_MOF
	Term_ABNF
	Term_IDL
	Term_OCL
	GOLF_Schema
	GOLF_Base
	GOLF_Club
	GOLF_ClubMember
	GOLF_Professional
	GOLF_Locker
	GOLF_Tournament
	GOLF_MemberLocker
	GOLF_Lesson
	GOLF_ProfessionalMember
	GOLF_ProfessionalStaffMember
	GOLF_TournamentParticipant
	GOLF_Address
	GOLF_Date
	GOLF_PhoneNumber
	GOLF_ResultCodeEnum
	GOLF_ProfessionalStatus
	GOLF_ProfessionalStatusEnum
	GOLF_MemberStatusEnum
	GOLF_StatesEnum
	JohnDoe_mof
	Ref_ISO_IEC_14750
	Ref_OMG_UML_Superstructure
	Ref_W3C_XML_Schema_Part2

