

# An Analysis of First Fit Heuristics for the VM Relocation Problem

Gaston Keller, Michael Tighe, Hanan Lutfiyya and Michael Bauer

October 26, 2012



## Overview / Outline

- Background
- Problem + Question
- Proposed Solution
- Experiments
- Conclusions





Src: http://www.google.com/about/datacenters









VM Resource Allocation.

- Fixed, non-shared
- Oversubscription



VM Resource Allocation.

- Fixed, non-shared
- Oversubscription

Stress situation







Dealing with Stress Situations.

- Do nothing
- Reallocate resources locally
- Migrate VMs away (to free resources)



Dealing with Stress Situations.

- Do nothing
- Reallocate resources locally
- Migrate VMs away (to free resources)





#### Problem

VM Relocation Problem.

Given a set of stressed, non-stressed and suspended hosts, find a set of VM migrations that will eliminate the stress situations.

#### **Problem**

VM Relocation Problem.

Given a set of stressed, non-stressed and suspended hosts, find a set of VM migrations that will eliminate the stress situations.



Let's apply Bin Packing heuristics (e.g., First Fit Decreasing).

#### Problem

VM Relocation != Bin Packing.

- 1) Hosts (bins) are already loaded (packed).
- 2) Minimization of hosts (bin) used may not be the only goal to pursue.



## Question

If different VM Relocation heuristics consider VMs and host for migration based on different criteria...

... do they produce better assignments (and achieve better long-term outcomes) when considering their particular goals?



Assumptions & Limitations.

- Homogeneous hosts
- Hosts' load level based only on CPU
- Independent VMs



Basic VM Relocation Solution.

For each stressed hosts:

select VM for migration
select target host
issue migration



VM Selection.

- A) Sort VMs in decreasing order by CPU load
- B) Sort VMs in increasing order by CPU load

Target Host Selection.



Target Host Selection.

- 1) Increasing
- <mark>↑ ↑ —</mark>
- 2) Decreasing
- ↓ ↓ —

3) Mixed

↑ ↓ —

VM Relocation policies.

| Policies | VM sorting | Target sorting |
|----------|------------|----------------|
| FFDI     | Α          | 1              |
| FFDD     | Α          | 2              |
| FFDM     | Α          | 3              |
| FFII     | В          | 1              |
| FFID     | В          | 2              |
| FFIM     | В          | 3              |

Design.

- Data centre simulation tool: DCSim
- 10 simulation days, 5 repetitions
- Hosts' HW: 4 CPU cores, 8 GB RAM
- Load Thresholds: 85%, 50%



Design.

- # VMs: 300, 400, 452, 500
- VMs HW: variable CPU demand
   (1 CPU core max), 1 GB RAM
- VMs' workload: dynamic, trace-driven
   (ClarkNet, EPA, Google Cluster Data trace)



#### Metrics.

- Average Active Hosts
- Host Utilization
- (Data Centre) Power Consumption
- Dropped Requests
- # Migrations



Results Summary.

#### FFDI

- used the most hosts
- lowest host utilization
- highest power consumption
- + lowest dropped requests
- + lowest # migrations
- FFID behaved opposite to FFDI.



Results Summary.

- FFII, FFIM and FFDD achieved average results (between FFDI and FFID).
- FFDM followed one step behind, but did so issuing less migrations.

### Conclusions

Part I. Observations.

- No one policy scored best in every metric.
- Policies succeeded to different extents depending on the scenario and the metrics observed.

### Conclusions

Part II. Interpretation.

- One single policy won't satisfy all goals.
- Tweaking VM and host sorting strategies can result in better trade-offs.
- Dynamically switching policies may offer better overall results.



