

Managing OVF Applications Under SLA Constraints on Contrail Virtual Execution Platform

Yvon Jegou, Piyush Harsh, Roberto G. Cascella, Florian Dudouet and Christine Morin

October 26th2012

Myriads Research Team INRIA Rennes Bretagne-Atlantique France

SVM 2012, Las Vegas, Nevada

Outline

- Contrail project
- Contrail Virtual Execution Platform
- Service Level Agreements and derived execution environments

Contrail

Open Computing Infrastructures for Elastic Services

Contrail Objectives

 Development of an integrated approach to virtualization offering services for federating laaS clouds and PaaS services on top of federated clouds

Research Challenges

- Seemless integration of resources from several clouds
- Trusted clouds by advanced SLA management
- Elasticity & dependability of PaaS services
- Scalability of the federation
- Interoperability
- Security

Contrail Federation

Federation = more than a simple broker or portal

Some challenges

- Heterogeneous providers
 - Public, private
- Dynamically choosing best providers
- Combine providers for a single application
- Elasticity: add resources from extra providers
- Migration?
- Security and privacy framework

QoS, QoP

- Service Level Agreements
- Via provider selection and integration
- Enforcement mechanisms at federation level
- Federation as a mediator and a 3rd party

The Contrail Software Stack

The Contrail Software Stack

VEP: Virtual Execution Platform

- VEP sits between the federation and SLA management components and an laaS provider.
- VEP provides a uniform high level interface to manage Contrail applications on different providers
- VEP integrates support for SLA enforcement
- VEP can be exploited as an independent component

VEP: Virtual Execution Platform Outline

- Manage lifecycle of distributed applications on a Cloud provider
- Support for Cloud federations (partial deployment)
- Support for heterogeneous laaS models
- Support (partial) for cloud bursting
- SLA support through Contrained Execution Environments (CEE)
- Support for advance reservations (necessary to guarantee provisioning)
- RESTful API, DMTF CIMI proposition style

VEP applications

- OVF distributed applications
 - OVF: Open Virtualization Format, DMTF standard
 - distributed applications made of virtual machines, disks, networks, shared storage
 - integrate deployment and configuration rules
- Application lifecycle
 - Contextualization
 - Deployment
 - Elasticity
 - Checkpoints (OVF)
 - Support for partial deployment (from federations): deployment documents
- Heterogeneous laaS models
 - VEP integrated to provider infrastructure (Contrail+OpenNebula)
 - Supports advance reservation
 - Remote exploitation of IaaS Cloud from VEP (Amazon)

OVF applications and Service Level Agreements

Not all users require the same constraints for application execution

- Security / protection
- Data protection
- Performance
- Monitoring

Contrail derives Constrained Execution Environments (CEE) from negotiated SLAs

- VEP applications are executed inside Constrained Execution Environments
- Deploying the application inside a different CEE results in different guarantees about performance, protection, etc.
- Note: Contrail VEP is not in charge of reacting to SLA violations
- All monitoring data published on a publish-subscribe bus

CEE: Constrained Execution Environment

- A CEE defines a virtual elastic infrastructure
 - Resource handlers for virtual machines, storage and networks
 - Constraints on allocated resources
 - Location
 - Affinity
 - Protection
 - Performance
 - Monitoring configuration
- User applications are deployed inside CEEs
- A user can have multiple environments
- CEE templates proposed by Cloud providers
- CEE generated from Service Level Agreements (SLA)
 - Contrail: external service for SLA management

OVF application deployment on a CEE

- Physical resource allocation
 - CEE resource handlers define rules for allocating OVF virtual resources
 - Explicit mapping rules from deployment documents
 - Default rules
- Deployment document
 - A list of OVF virtual resources to deploy
 - Multiple deployment documents for elasticity management
- Constraint awareness
 - VEP integrates (interacts with) a resource allocator/scheduler
 Not possible on all providers
- Resource allocation in 2 steps
 - O Pre-deployment of all virtual resources: gather all resource requirements
 - Allocation of all resources in a single shot Elasticity: allocator aware of already allocated resources

Deployment Documents

Deployment document

- A list of virtual resource to be deployed
 - OVF virtual resource
 - CEE handler
 - Constraints
 - Contextualization data (OVF properties)
- Each new deployment document posted to the CEE adds new resources to the environment

Deployment documents can be submitted

- by the user
- by the federation layer
- by the SLA enforcement system

Snapshots

CEE snapshot

- It is possible to take a snapshot of a CEE with an application running inside
- The CEE snapshot can be re-instantiated later (on the same provider)

Application snapshot

- Links between virtual resources and handlers not maintained in the snapshot
- The application snapshot can be re-instantiated in a different CEE
- All capabilities (elasticity) are maintained

OVF snapshot

- Stopped application snapshots (all data inside disk images) can be exported in OVF format
- The resulting OVF contains
 - The original OVF
 - Deployed items added as extra virtual systems or disks
- Elasticity capabilities maintained

VEP Status

- First release since spring 2012
 - Does not support all VEP capabilities (no CEE)
- Next release planned spring 2013
 - With full CEE support
 - CIMI RESTful API
- Full compliance with CIMI expected
- CEE integrated as an extension to CIMI

Conclusion

Contrail VEP

- Support for cloud federation
- Support for Service Level Agreements
- Support for application elasticity
- Standard OVF applications
- Plugins for different laaS providers