

DCSim

A Data Centre Simulation Tool for Dynamic Virtualized Resource Provisioning

Michael Tighe, Gaston Keller, Dr. Michael Bauer, Dr. Hanan Lutfiyya

Agenda

Discuss the problem of dynamic resource management in the cloud. Introduce a new simulator, DCSim, to help develop new strategies.

Dynamic Resource Management in the Cloud

Cloud Computing & laaS

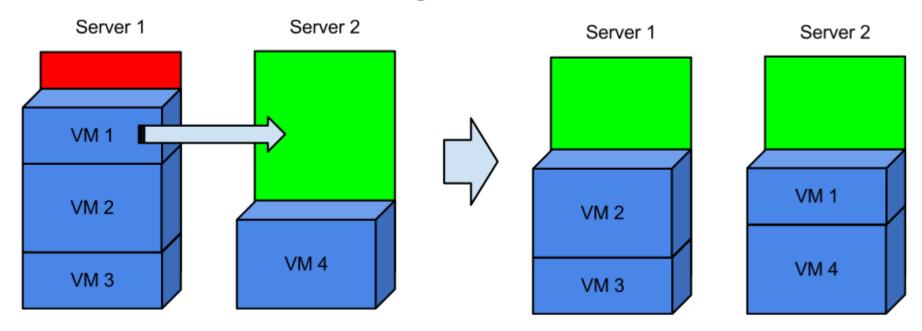

- Computing resources on-demand, billed as a utility
- Hosted in large data centres
- Infrastructure as a Service (laaS)
 - Clients rent servers with low-level access
 - Clients responsible for operating system and applications

Provider Challenges

- Servers are typically underutilized
 - Average loads of a web server can be 30% of peak
- Wasted resources equates to:
 - More physical resources required
 - More power consumed
 - Higher maintenance costs

Virtualization

- •Run multiple "virtual machines" on a single physical machine
- Make better use of a physical server's resources



Problem!

- •Resources still underutilized = overcommit!
- Workload of VMs are dynamic, therefore so are its resources needs
- •What happens if a server doesn't have enough resources to meet demand?

Solution?

- Dynamically reallocate and provision resources to meet changing demand
- Virtual Machine Live Migration

Algorithms

- Determining which VM to migrate where and when is difficult
 - Similar to multi-dimensional bin packing problem (NP-Hard), except more complex
 - Algorithms must execute quickly to respond to dynamic resource demands
 - Balance needs of clients (SLA) with Cloud Provider costs (i.e. power, infrastructure)

Evaluating Algorithms

- •How can we experiment with and evaluate dynamic resource provisioning algorithms?
- Physical test-bed
 - Implementation is complex
 - Long experiments
 - An entire data centre to experiment with?

Evaluating Algorithms

Simulation

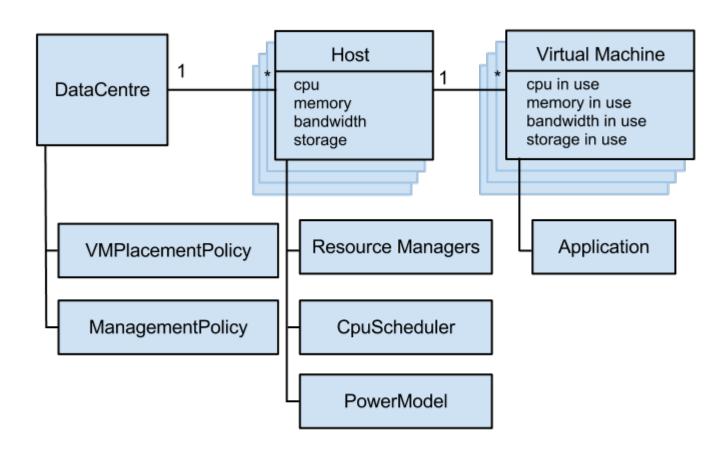
- Quickly evaluate algorithms
- Simulate large scale over long time periods
- Needs to be supplemented with small scale realworld experiments

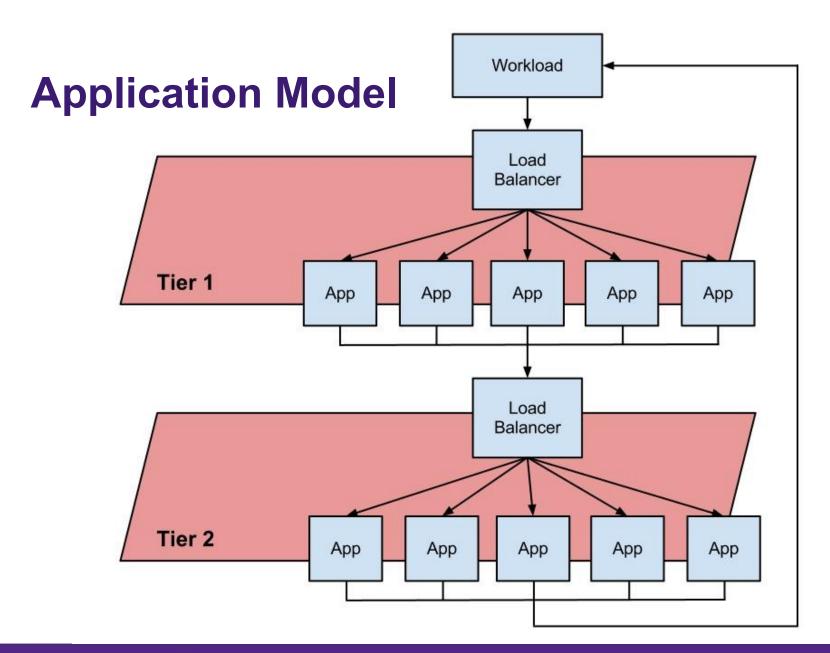
Existing Simulators

- ·GreenCloud, MDCSim, GDCSim
 - No virtualization, single tenant, commercial, focus on physical data centre design...

·CloudSim

- Close to what we require
- Originally designed for grid-style workloads
- Missing some features (VM replication, VM dependencies, work conserving CPU...)


Introducing DCSim



DCSim: A New Simulator

- Work conserving CPU (KVM, Xen, VMWare)
- Overcommitting of CPU
- Application Model (transactional, continuous)
- VM Dependencies
- VM Migration
- VM Replication
- Server power-on/suspend/power-off time
- ·Extensible

Architecture

Metrics

- SLA Violation
- Power Consumed (kWh)
- Number of Migrations
- Active Hosts
- ·Host-hours
- Active Host Utilization
- •

Evaluation

- Compare three methods of VM allocation
 - Static allocation for peak load
 - Static allocation for average load
 - Dynamic reallocation
- •200 Hosts, 400 VMs
- Workload traces from Internet Traffic Archive
- VMs initially placed in random order
- 10 simulated days

Evaluation Results

	Static Peak	Static Avg	Dynamic
# Migrations	0	0	18547
Avg. Hosts	58.2	24	36.4
Host Util.	48.8%	94.6%	77%
Power (kWh)	2804.1	1431.1	2009.9
SLA Violation	0%	21.4%	0.8%

- Dynamic VM allocation achieves some of the advantages of both static alternative
- The simulator is demonstrated to be a useful tool to evaluate VM allocation strategies

Performance

- Simulate 10 days with increasing numbers of hosts and VMs
- Dynamic VM reallocation performed
- Represents typical usage

	1	2	3	4	5	6
# Hosts	100	1000	10000	1000	1000	1000
# VMs	400	4000	40000	5000	6000	7000
Time	9s	~2 min	~1 hour	~3 min	~4 min	~5 min

Work Using DCSim

- •Comparison of First-fit Heuristics for VM Relocation [1]
- •Dynamic Management Strategy Switching [under submission]
- Service Tier Auto-scaling
- Distributed Algorithms for VM Relocation & Consolidation

[1] G. Keller, M. Tighe, H. Lutfiyya, M. Bauer, "An Analysis of First Fit Heuristics for the Virtual Machine Relocation Problem" in SVM Proceedings, 6th Int. DMTF Academic Alliance Workshop on, Oct. 2012

Future Work

- Data centre organization (racks, clusters)
- Networking
- Thermal impact of hosts & cooling costs
- Obtain traces/workloads with dynamic memory and bandwidth
- Memory Overcommitting

