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Abstract

• VM live migration important for energy efficiency
• Establish energy efficient target distribution of VMs

• No perceivable downtime while live migrating?

• Live migration is resource intensive (iterative page copying)

• Experiments: Influence on service levels while migrating?
• Modelling: Predict service levels based on utilization?
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Scenario

Scenario

Scenario

• Virtualized data center, static consolidation (P2V)

• Provisioning for peak load, still bad energy efficiency

• E.g., 9-5-cycles, very low utilization at night

• Live migration enables dynamic consolidation

• But: Seldom used, fear of possible side effects

• ⇒ Identify and quantify effects on (web) service levels
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Experiment

Experiment

Experiment

• 2 servers, 1 VM, migrating forth and back

• VM disk image on central node (Gbit, open-iscsi)

• qemu-kvm VM: Linux, Apache2, PHP5, MediaWiki

• SQL VM and load generation on an extra nodes

• Logging utilization of servers and VM, >100 variables

• Rise load from 50 to 600 concurrent virtual users and back

• Migrate every 15min, track response time of last 5min (SLA=1s)
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Data overview

CPU utilization
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Abbildung: Effect of increasing/decreasing HTTP workload in equal steps on

the VM’s CPU utilization
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Data overview

Load average
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Abbildung: Effect of increasing/decreasing HTTP workload in equal steps on

the VM’s UNIX load average.
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Data overview

Markov Queues

• UNIX load as approximation to Q, the average number of jobs

in an M/M/1 queue, CPU utilization as ρ, the system utilization

• QM/M/1 = ρ2

1−ρ

• UNIX load exponentially averaged by definition, service times

are not necessarily exactly exponentially distributed, a

systematic deviation from the theoretical solution is expectable.

• QM/G/1 = ρ2

1−ρ · (1+c2

B)
2

, cB: coefficient of service time variation

• Exponentially distributed service times: c2

B = 1

• Deterministic service times: c2

B = 0

• Simple linear regression: c2

B = 0.42
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Data overview
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Abbildung: Queuing issues are rapidly increasing at 60-70% CPU utilization.

The measured data follow the trend of the theoretical solution very closely.
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Data overview

Response Time
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Abbildung: HTTP response times are massively increased during phases

with higher workload.
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Data overview

Service Level
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Abbildung: Service levels decrease significantly during phases of high

workload. The maximum allowed response time is 1 s, which is extremely

conservative.
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Data overview

Load average vs Service Level
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Abbildung: Higher load average is an indicator for queuing issues which are

causing decreased service level ratios. The measured data follow the

theoretical solution closely for higher load values.
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Data overview

Response Time: Low Load
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Abbildung: Influence of live migration on HTTP response time and service

level during low load.
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Data overview

Response Time: Medium Load
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Abbildung: Influence of Live Migration on HTTP Response Time and service

level during medium load.
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Data overview

Response Time: High Load
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Abbildung: Influence of Live Migration on HTTP Response Time and service

level during high load.
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Model selection

Model selection

Stepwise: AIC

• Akaike Information Criterion (AIC), lower values are better

• AIC = 2k − 2 ln(L)
• k : the number of independent parameters of a model

• L: the maximum likelihood

• Stepwise model selection approach

• Find trade-off between number of parameters (model size) and

goodness of fit (model quality)

• Start with empty model, in each step a variable can be

added/removed, until the AIC can not be decreased further.

• Does not guarantee to find a global optimum, but typically gives a

near-optimum result within reasonable time.
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Model selection

Model selection

Exhaustive: LEAPS

• Comparison with the stepwise AIC approach

• Exhaustive all-subsets-regression

• Find best of all possible models for given range of model size

• Computationally intensive even if number of variables is limited
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Model selection

AIC
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Abbildung: The AIC value quickly improves during the first steps and then

slowly converges to the final value, thus allowing a trade-off between model

complexity and precision.
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Model selection

AIC

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16

S
ta

n
d

a
rd

 D
e

vi
a

tio
n

 o
f 

R
e

si
d

u
a

ls

Step

Best value

Abbildung: The residuals’ standard deviation quickly improves during the first

steps and then slowly converges to the final value, when using stepwise AIC.
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Model selection

AIC

Abbildung: QQ-Plot of standardized residuals for the model produced by

stepwise AIC.
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Model selection

AIC

Abbildung: There is no visible correlation between the residuals’ variance

and the time series.
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Model selection

LEAPS
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Abbildung: Higher model complexity yields better model quality when using

LEAPS, but the increase is rather small.
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Model selection

LEAPS
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Abbildung: Higher model complexity yields better regression error when

using LEAPS.

25 / 31



Predicting Web Service Levels During VM Live Migrations

Model selection

AIC: Most influencing variables of final model

Variable Meaning Estimate Std. Error Pr(> |t|)
Intercept 2.395e+00 5.069e-01 3.00e-06

wp01 load5 VM UNIX load5 -1.871e-02 2.627e-03 3.67e-12

wp01 swapUsed VM swap used -7.656e-07 8.809e-08 < 2e-16

wp01 residentSize SQ The squared amount of res-

ident memory used by the

qemu-kvm process.

-4.652e-14 1.652e-14 0.00506

src host cpu proc s Tasks created/s, source

host.

-2.475e+00 9.166e-01 0.00716

src host cpu proc s SQ 1.091e+00 4.133e-01 0.00856

wp01 cpu util vmnorm SQ -1.328e-01 3.187e-02 3.63e-05

wp01 cpu util vmnorm CPU util measured inside

VM

9.517e-02 2.316e-02 4.64e-05

wp01 load5 SQ The squared UNIX load5
of the VM.

-1.140e-03 1.918e-04 5.22e-09

wp01 freeMemRatio SQ The squared ratio of free

memory inside the VM.

1.976e-02 9.462e-03 0.03727

Tabelle: The most influencing and significant variables of the final model

produced by stepwise AIC.
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Conclusions

Conclusions

Qualitative

1 Impact of live migration on SL depends on amount of workload

2 Tighter SLAs can be fulfilled for low workload situations

3 High workload: SL decreases massively

4 ⇒ Live migrating when VM has only medium load

5 Avoid multiple live migrations within short time

6 ⇒ Inertia effect for recently migrated VMs

7 Avoid senseless flip-flop migrations and stabilize service level
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Conclusions

Conclusions

Quantitative

1 SL variance during a live migration to 90% predictable using only

a single variable, the UNIX load5 average.

2 Models with 12 variables can explain 95% of variance

3 Models selected by AIC/LEAPS are of comparable quality and

robust to statistical tests

4 AIC is way faster, so LEAPS is not really necessary
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Conclusions

Conclusions

Technical

1 Systems using live migration as a mechanism to realize a more

energy efficient target distribution need to consider the UNIX
load average, at least for web servers and comparable

2 Typical hypervisors do not collect and export this information

3 Needs to be done by VM introspection

4 Related efforts by qemu-kvm and libvirt developers to

pass-through the VMs’ memory utilization (free mem)

5 Should be extended to export load information
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Conclusions

Future Work

1 Influence of additional VMs

• idle

• utilized

• and a mixed scenario

2 Linux and qemu-kvm: Kernel Samepage Merging (KSM)

3 Database VM migration

4 Bandwidth limits, maximum allowed downtime

5 Migration delay, energy consumption, service downtime
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Conclusions

Q&A

Thank you for your attention!
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