
Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Realization of Inventory Databases and
Object-Relational Mapping for the Common

Information Model

Øystein S. Haaland

Department of Physics and Technology, University of Bergen.

November 8, 2011

Systems and Virtualization Management: Standards and the Cloud

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Outline
1 Introduction

Background
High Level Trigger

2 CIM+ORM and inventory gathering
Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

3 Conclusion and outlook

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook
Background
High Level Trigger

Introduction

Øystein S. Haaland CIM, ORM and Inventory databases.

ALICE detector system

Figure: Illustration of the ALICE detector system from the ALICE web
pages.

LHC/CERN

Figure: Illustration of LHC from CERN document server.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook
Background
High Level Trigger

High Level Trigger

What is triggering?
Tell data acquisition systems when something interesting
happens so that it can be read-out.
Done in several levels: lower levels in front-end electronics,
while high level or event filtering typically is done in software
on high-performance compute clusters.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook
Background
High Level Trigger

Motivation

ALICE can produce as much as ~25 GB/s, but bandwidth to
storage is limited to ~1.25 GB/s.
Much of the data is not new physics and it can therefore be
discarded.

How is it done?
Selection of interesting events: Event filtering or triggering.
Selection of interesting parts of events: Region of Interest.
Compression of events: Reconstruction and lossless
compression.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook
Background
High Level Trigger

ALICE HLT cluster

Online system
Online system, not a batch farm. Cannot rerun when
something goes wrong.
Any faults have direct impact on the physics results.

Process placement
Hierarchical and distributed processing.
Process placement important aspect.

Challenge
Must have reliable and stable operation.
But using commodity hardware + complex software
configuration => have to build in resilience for failure.

Øystein S. Haaland CIM, ORM and Inventory databases.

Cluster

Figure: Picture of cluster.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Usefulness of Inventory Databases

Inventory database
To know which part to order when something breaks.
To keep track of systems when reorganizing.
To have relevant and up to date information available when
debugging.

Former solution
Typical LAMP stack with a manually maintained database.
Too much work to keep information up-to-date with the
available man-power.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Advantages of automatic updating

Automatic process placement of the distributed physics
application.

Implementing fault-tolerance with fail-over procedures.

Increased consistency in inventory data. No room for human
mistakes.
Reduced cost as the cluster administrator is relieved from a
tedious and laborious task.
System management and monitoring.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Requirements

Functional
Provide up to date information about the state of the cluster
for the physics applicaton.
System management and monitoring applications need
inventory information.

Non-functional
Support the programming languages that are in use in HLT:
Python, Java, C++.
Scalability. HLT was designed for a maximum of around 1000
nodes. Currently around 200.
Reliability. Need to ensure availablility of inventory information
through use of redundancy or clustering.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Choosing an approach

Options
Use existing CIM implementations (sblim, openpegasus,
OpenWBEM).
Use own model with ORM.
Use CIM model with own implementatino in ORM.

Needed support for multiple programming languages.

Wanted tight integration with existing software.

Needed only information gathering, not complete
instrumentation.
RDBS in the back-end would make it easier to implement
high-availability and scalability.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Object-relational mapping

Object-relational mapping is a programming technique for
persisting data from object-oriented programming languages to
relational databases.
Software packages that implements this conversion in a generic
way, so that it can be used for any object hierarchy, are called
object relational mappers.

Examples
Hibernate for Java was one of the first of such mappers and is
maybe also the most well-known.
Sqlalchemy for python is an ORM, that includes a declarative
way of defining objects, further simplifying the process of
mapping objects to databases.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Advantages of ORM

Relational Database Systems: transactionality and enhanced
data integrity.
Object-Oriented programming: Reuse and Modularity.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Model hierarchies and level of mapping

Two options:
Mapping at the level of CIM meta schema: flexible, but no
intuitive mapping between CIM classes and programming
language classes. Lack of constraints.

Mapping at the level of CIM schema: less flexible, but more
natural mapping between CIM classes and OOP classes.

Decision: map at level of CIM schema, counter less flexibility by
automatic generation. Makes it as flexible as mapping at meta level.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Applying ORM to an existing model

The typical mappings one have to consider when applying an ORM
to a model, are:

Model to relational database schema.

Model to class definitions in target programming language.

The actual ORM mapping between the relational database
schema and the class definitions in the programming language.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Mapping details

Tree aspects to consider for ORM:
Mapping of structure.

Classes and properties: Normally a straight-forward mapping
from CIM model.

Datatypes: relatively easy to find corresponding data types in
both programming languages and relational databases.

Inheritance: This is where it gets harder. Has to decide for
common type of mapping.

Mapping of constraints.
Qualifiers: for instance maximum values for integers or lenght
of strings.

Mapping of behavior.
Methods: This we do not consider as it is not needed in our
environment.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Major tasks

The effort of designing the inventory solution can be divided in two
major tasks:

1 Creating a programming language representation of a CIM
model instance as well as the corresponding object-relational
mapping.

2 Automatically keeping the data in the CIM model instance up
to date.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Two implementations

Two implementations have been developed:
For supporting more than one programming language: python
and java.
To be able in the future to test interoperability between
solutions.

Øystein S. Haaland CIM, ORM and Inventory databases.

Mapper generation tools 1/2

!"#$%&'($#
)$%$*$+"
,-+%".

,/0".12($3"."(%
4''#

3"("5$%"

6$7$
899#&/$%&'(

:(+%$(/"+1
;6$7$1<*="/%+>

,?@

A&*"5($%" ,B#$#/0".-

C&.9-
;D-%0'(18D:>

:(+%$(/"12$($3"5
;6$7$18D:>

D-%0'(
899#&/$%&'(

2<E1C'.9&#"5

,?@

3"("5$%"

:(+%$(/"+1
;D-%0'(1<*="/%+>

C:21,/0".$

2<E

Figure: Overview of the tools developed.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Mapper generation tools 2/2

Mapper generation tools
For Python, the mapper generation tool is implemented as a
simple back-end to the SBLIM MOF compiler that outputs
ORM-enabled python code.

For Java this is a flexible framework with a lot of functionality
(Chainreaction). For more information, see the references of
the paper.

Inventory gathering systems
The python inventory solution is a stand-alone inventory
gathering system for compute clusters.
The Java solution is a module that is integrated in SysMES,
where the framework takes care of the client/server
communication.Øystein S. Haaland CIM, ORM and Inventory databases.

Inventory gathering system

!"#$%&

'()$"*+%,&-%.$,
-%)*/-&-

!"#$%&
'()$"*+%,&-%.$,

-%)*/-&-

+%0$%&(12*3$10$1

'()$"*/4

,&(1$*5*
67)-&$

,&(1$*5*
67)-&$

'()$"

Figure: The two inventory gathering systems.

Data access 1/2

Figure: Four ways to use the CIM. Figure taken from “Common
Information Model (CIM) Infrastructure” - DSP0004.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Data access 2/2

Exchange of inventory information at both SQL- and
ORM-level.

Provide XML-RPC (or similar) bindings created by
introspection of the generated CIM instance to extend
compatibility to languages without ORM.

The client/server transport of the inventory gathering solution
is a forth option for data access. The ways of access inventory
information is summarized in the table in the next slide:

Øystein S. Haaland CIM, ORM and Inventory databases.

Summary of access methods

Table: Comparison of the different access methods to the inventory data.

Access
method

Data
operations

Interoperability OO-like
client side

ORM CRUD and
complex
queries

Limited to
languages
with ORM
solutions

Yes

Inventory
Gathering
System

CRUD Depends on
implementa-
tion

hwdiscover:
Yes
SySMES: No

XML-RPC CRUD All common
languages

No

SQL CRUD and
complex
queries

All common
languages

No

Web service CRUD All common
languages

No

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Scalability and reliability

Typically with ORMs, one can choose which RDBS should be
used for persisting objects.
This means that high-availability and scalability can be
achieved by careful selection and configuration of database
solution, mostly independently of the rest of the system.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Applications of Inventory databases
Object-relational mapping of the CIM
The CIM to ORM mapping
Design and solution
Implementation

Python implementation

Two differences
Used together with the PerspectiveBroker of the twisted
framework, to implement a “Remote Persistent Object”.
Uses declarative module of sqlalchemy -> only needs to
provide the class definitions and the declarative mapper does
the rest.

Future
Make use of inotify for updating information.
Extend the inventory gathering system with resource
management capabilities.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Conclusion

Normal relational databases can be used for storing an
instance of the CIM model.

Transactionality is handled by the database/ORM layer, don’t
need to think about this in code.

Makes it easier to code concurrent, distributed applications
(with a central data storage).

Can use features already present in relational database
products. Most important for us:

High-reliability: i.e. can choose database with clustering
support
Scalability: can go from convenient unittesting in sqlite to
mysq/postgresql/oracle for deployment.

Native and intuitive language bindings due to automatic
creation of ORM-enabled code.

Also introduced “Remote persistent objects”.
The concept successfully tested in two similar applications
(inventory databases), using different languages.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Results

Only the functionality of the python implementation has been
tested on the production cluster.

Works as expected. Information is gathered and the databasse
is filled.
No performance or interoperability tests have been done so far
on the production cluster.

Limited performance testing has been done on smaller setups.
sqlite in memory is twice as fast as on disk.

The java implementation has been tested in a test cluster in
Heidelberg.

Øystein S. Haaland CIM, ORM and Inventory databases.

Introduction
CIM+ORM and inventory gathering

Conclusion and outlook

Outlook

The tasks for the near future will be extend the infrastructure that
can be used to collaboratively work on increasing the
interoperability of the CIM+ORM frameworks through unification
of the mapping and its configuration.

Facilities that can be used to automate conformance testing,
interoperability testing, unisttesting, package building and
more.
If the goal of supporting many programming languages
working on the same database at the same time (given
generators are provided) is reached, it will dramatically
improve the interoperability on the data persistence layer.

Øystein S. Haaland CIM, ORM and Inventory databases.

	Introduction
	Background
	High Level Trigger

	CIM+ORM and inventory gathering
	Applications of Inventory databases
	Object-relational mapping of the CIM
	The CIM to ORM mapping
	Design and solution
	Implementation

	Conclusion and outlook

