
Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Managing Dynamic Memory Allocations in a
Cloud through Golondrina

4th International DMTF Academic Alliance Workshop on
Systems and Virtualization Management:

Standards and the Cloud

Alexander Pokluda, Gastón Keller and Hanan Lutfiyya

Department of Computer Science
University of Western Ontario

October 29, 2010

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Introduction

Abstract
We present a policy-based framework that supports automated
dynamic resource management in a virtualized environment. This
allows for flexibility in how resources are allocated. We show how this
framework can be used to support memory management through the
use of migration and making local resource adjustments.

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Accommodating Peak Demand with Over-Provisioning
Modern data centres are comprised of tens of thousands of
servers, and perform the processing for many Internet business
applications
Unit of allocation is typically one physical machine
One estimate is that servers are over-provisioned by more than
500% in order to deal with peaks in demand

!"#$%&

'(
)*

%&

+,$-).$%'()*
/)0)1"23
'()*

!"#$%&'()"*'+","'-).'"/'0/,&./&,'1$$%23",2)/

!"#"$%&'
()*+",*-./"0

!"#$%&#'()%*'+),-%$#*'.)'+%-/0.1'2)$'%3'43.#$3#.'!--50/%.0)3

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Over-Provisioning Leads To Underutilization

Over-provisioning means underutilization
One approach to increasing utilization is server consolidation,
which consists of hosting multiple servers on one physical
machine
Server consolidation is possible through virtualization
Virtualization provides an interface to the actual hardware that
can support a number of virtual machines that have application
software installed on them

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Strategic Placement of Virtual Machines
Can Increase Utilization

If virtual machines are placed on physical machines based on
peak demand, physical machines may still be highly underutilized
If virtual machines are placed on physical machines based on
average demand, the virtual machines may compete for the
same resources when demand increases
Much of the work in dynamic resource provisioning for Internet
applications involves constructing a performance model
Performance models are used to periodically determine optimal
placements of virtual machines as part of periodic maintenance

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Contributions

Contributions
1 Memory management using the OpenVZ virtualization platform
was studied

2 A simple heuristic for identifying memory stress situations was
developed using a black-box approach

3 A simple heuristic for adjusting memory allocations was
developed and experimented with

4 A flexible framework that supports the separation of
decision-making from the specific virtualization technology was
designed

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Our Solution

An important aspect of a
management framework is the
ability to determine the
appropriate action in response to
workload fluctuations.

The appropriate action depends
on strategies that can be
represented through policies.

We present a policy-based
management framework that is
depicted in the figure to the right.

Figure: Golondrina’s architecture

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

System Behaviour is Configured Through Policies
A policy associates an event with one or more rules of the form
if conditions then actions

oblig NotifyMemoryStressViolation{
target DepartmentContainers
subject Manager
on memoryStress(containerID,

hostNameID,
freePhysicalPages);

do IncreaseMemory(containerID,
hostNameID)

when freePhysicalPages > N;
do t = ChooseTarget()
when freePhysicalpages < N ->
MigrateContainer(containerID,

hostNameID,t);
}

Example: A sample memory-stress
violation policy

oblig ConfigurePolicy{
subject Manager
on ConfigurePluginRequest(k,p);
do ConfigureChoseTargetPlugin(p)
when k = "ChooseTargetLocation";

}

Example: A sample configuration
policy

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

System Behaviour is Configured Through Policies
A policy associates an event with one or more rules of the form
if conditions then actions

oblig NotifyMemoryStressViolation{
target DepartmentContainers
subject Manager
on memoryStress(containerID,

hostNameID,
freePhysicalPages);

do IncreaseMemory(containerID,
hostNameID)

when freePhysicalPages > N;
do t = ChooseTarget()
when freePhysicalpages < N ->
MigrateContainer(containerID,

hostNameID,t);
}

Example: A sample memory-stress
violation policy

oblig ConfigurePolicy{
subject Manager
on ConfigurePluginRequest(k,p);
do ConfigureChoseTargetPlugin(p)
when k = "ChooseTargetLocation";

}

Example: A sample configuration
policy

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Collecting Resource Usage Data
Monitoring requires some
form of instrumentation, which
we refer to as a Sensor,
specific to each managed
resource
A Sensor Agent provides a
standard interface to sensors
The set of sensors on a
hardware node is managed
by a Sensor Manager
An entity that changes the
system is referred to as an
Actuator; similar to sensors,
there is an Actuator Manager
and Actuator Agent
(not shown)

Figure: Golondrina’s architecture

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Collecting Resource Usage Data
Monitoring requires some
form of instrumentation, which
we refer to as a Sensor,
specific to each managed
resource
A Sensor Agent provides a
standard interface to sensors
The set of sensors on a
hardware node is managed
by a Sensor Manager
An entity that changes the
system is referred to as an
Actuator; similar to sensors,
there is an Actuator Manager
and Actuator Agent
(not shown)

Figure: Golondrina’s architecture

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Collecting Resource Usage Data
Monitoring requires some
form of instrumentation, which
we refer to as a Sensor,
specific to each managed
resource
A Sensor Agent provides a
standard interface to sensors
The set of sensors on a
hardware node is managed
by a Sensor Manager
An entity that changes the
system is referred to as an
Actuator; similar to sensors,
there is an Actuator Manager
and Actuator Agent
(not shown)

Figure: Golondrina’s architecture

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Collecting Resource Usage Data
Monitoring requires some
form of instrumentation, which
we refer to as a Sensor,
specific to each managed
resource
A Sensor Agent provides a
standard interface to sensors
The set of sensors on a
hardware node is managed
by a Sensor Manager
An entity that changes the
system is referred to as an
Actuator; similar to sensors,
there is an Actuator Manager
and Actuator Agent
(not shown)

Figure: Golondrina’s architecture

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Analyzing Resource Usage Data
The System Manager includes an Event Manager that receives
sensor data that it analyzes to determine whether or not a
significant event has occurred
Significant events are identified by the evaluation of a condition
associated with the event, e.g. memoryStressScore > 0.80
The event detection server maintains a set of tuples in the form
(e, p), where p represents a policy identifier and e represents the
event expression, for each operational condition policy
The evaluation of operational conditions can also be done by
sensor agents

Figure: A subset of Golondrina’s architecture

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Underlying Resource Management Framework
The Golondrina prototype currently uses OpenVZ
OpenVZ is a Linux kernel modified to run isolated containers
(virtual user-space environments)

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

How Memory is Allocated

A process may increase its memory consumpution by either
explicit requests for more memory (e.g. calls to malloc) or stack
expansion
Like most current operating systems, OpenVZ allocates memory
in units of pages
We use the term alloc to refer to the number of pages currently
owned by a container
We use the term allocUsed to refer to the number of currently
owned pages that have been written to

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Many Per-Container Resource Limits Exist
allocationGuatantee number of pages guaranteed to be granted
allocationBarrier soft limit on number of pages that may be granted
allocationLimit hard limit on number of pages that may be granted
A memory allocation request for n pages is guaranteed to succeed if

n + alloc <= allocationGuarantee

All memory requests will succeed if n is less than the number of free
physical pages and

n + alloc <= allocationBarrier

If n + alloc > allocationBarrier then only a high priority request will
succeed provided that n is less than the number of free physical
pages and

n + alloc <= allocationLimit
Every request beyond allocationLimit fails

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

How a Memory Stress is Detected

A memory stress score is calculated at periodic intervals for each
container according to the following algorithm:
1: x = failcntKillsi - failcntKillsi−1
2: y = failcntAllocationsi - failcntAllocationsi−1
3: if x > 0 then
4: s0 = 1;
5: end if
6: if y > 0 then
7: s1 = 1;
8: end if
9: s2 = min (1, allocUsedi/minMemoryGuarantee);
10: s3 = min (1, alloci/allocationBarrier);
11: stressScorei = max (s0, s1, s2, s3);

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

How a Memory Stress is Resolved

Assume a container’s memory stress score exceeds a threshold,
identifying it as memory-stressed. The system will attempt to resolve
the memory stress by applying the first action below that will not
destabilize the system.

1 Increase the container’s memory limits, allowing it to access
more memory on the current hardware node

2 Migrate the stressed container to another hardware node where
it can be given access to more memory

3 Other container-specific actions
If a hardware node is memory stressed but no containers are, then an
attempt is made to migrate the container that is using the largest
amount of memory on that hardware node.

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Outline

1 Introduction

2 Architecture

3 Memory Stress Detection and Resolution

4 Prototype Implementation and Experimental Results

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

The Prototype Implementation and Test Environment

We have developed a prototype implementation called
Golondrina
Golondrina is written in Python and interfaces with OpenVZ
Golondrina has three types of actuators:

Memory-Adjustment Actuators
Migration Acuators
Replication Actuators

We tested the system using several containers spread across
three identical harware nodes
Each container hosted a PHP-based website that was sent
HTTP requests

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Several Experiments Were Used to Validate the
Prototype

Experiment 0 The containers were given enough memory so that no
memory-stress occurred

Experiment 1 The conatiners started with the minimum amount of
memory required and policies were disabled

Experiment 2 Similar to Experiment 1 except local memory
adjustments were enabled

Experiment 3 Similar to Experiment 2 excpet that local memory
adjustments and migrations were enabled

Exp Avg Min Max Std Dev Err % Throughput Fail Count
0 448 166 2275 243.72 0.00 8.0 0
1 1082 124 55576 5817.40 2.22 3.6 1002
2 866 115 49214 4748.84 1.63 4.9 809
3 370 137 4354 419.42 9.24 5.5 1143

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

Introduction
Architecture

Memory Stress Detection and Resolution
Prototype Implementation and Experimental Results

Conclusion

Conclusion

Early work in dynamic resource management with an emphasis
on memory was presented
The work presented assumes monitoring of utilization occurs
periodically
This information is used to adjust resource allocations in
response to workload fluctuations
This work is complimentary to work that focuses on server
consolidation
The approach to adjusting memory limits was straightforward;
future work will focus on adaptive resource control and
incorporate information gained from experiments with the
prototype

A. Pokluda, G. Keller and H. Lutfiyya Managing Dynamic Memory Allocations in a Cloud through Golondrina

	Introduction
	Architecture
	Memory Stress Detection and Resolution
	Prototype Implementation and Experimental Results
	Conclusion

